7.8. Адресация в ip-сетях
В семействе протоколов TCP/IP используются три типа адресов: локальные (физические, аппаратные), IP-адреса и символьные доменные имена (доменная адресация).
Локальные адреса уникальны для каждого сетевого соединения, они используются для доставки данных в пределах подсети, являющейся элементом составной интерсети. Вопросы физической адресации решаются на канальном уровне стека TCP/IP. Если подсетью является локальная сеть, то локальный адрес – это МАС-адрес, который назначается сетевым адаптерам и сетевым интерфейсам маршрутизаторов. МАС-адрес для всех технологий локальных сетей имеет формат 6 байт.
Локальные адреса присваиваются сетевой плате адаптера компьютера при ее изготовлении. Эти адреса выбираются производителем сетевого интерфейсного оборудования из выделенного для него по лицензии адресного пространства. При замене платы сетевого адаптера меняется и ее локальный адрес.
Поскольку локальные и IP-адреса независимы друг от друга (между ними нет никакой алгоритмической связи), для отображения IP-адресов в локальные адреса (при передаче данных) и локальных адресов в IP-адреса (при приеме данных) необходимы соответствующие средства.
Определение локального адреса по IP-адресу осуществляется по протоколу ARP (Address Resolution Protocol, протокол разрешения адресов), который работает различным образом в зависимости от того, какой протокол канального уровня работает в данной подсети. Если подсетью является Ethernet, то в ней предусматривается широковещательный режим работы, если же это протокол глобальной сети (Х.25, Frame Relay и др.), то он, как правило, не поддерживает такой режим. Основным инструментом работы протокола ARP является таблица разрешения адресов, или ARP-таблица. Эта таблица хранится в памяти компьютера и содержит строки соответствия между IP-адресами и локальными адресами для каждого узла сети. Если требуется по IP-адресу найти его локальный адрес, ищется в таблице строка с соответствующим IP-адресом и по нему в этой строке определяется локальный адрес. ARP-таблица заполняется автоматически модулями ARP по мере необходимости. Каждый компьютер сети имеет отдельную ARP-таблицу для каждого своего сетевого интерфейса. Отображение с помощью ARP-таблиц выполняется только для отправляемых IP-пакетов, так как только в момент отправки создаются заголовки пакетов.
Обратная задача по отображению адресов, т. е. определение IP-адреса по локальному адресу, решается с помощью протокола RARP (Reverse Address Resolution Protocol, протокол обратного разрешения адресов). Протоколы ARP и RARP абсолютно независимы.
I P-адресация в сети Internet базируется на концепции составной сети, состоящей из хостов и других сетей, причем под хостом понимается узел сети (компьютер рабочей станции, сервер, маршрутизатор), который может принимать и передавать IP-пакеты. Хосты соединяются через одну или несколько сетей (подсетей сети Internet), и адрес любого из них состоит из адреса сети и адреса хоста в этой сети. IP-адреса являются основным типом адресов, используемых сетевым уровнем для передачи пакетов между сетями.
IP-адрес представляется четырьмя десятичными числами, разделенными точками (например, 108.25.17.100). Каждое из этих чисел не может превышать 255 и представляет один байт 4-байтного адреса. 32-битный адрес состоит из двух частей: номера сети и номера узла. Длина каждой части является переменной величиной. Номер сети (он представляется старшими битами адреса) выбирается администратором произвольно, либо назначается по рекомендации специальной административной службы Internet. Номер узла назначается независимо от его локального адреса. Конечный узел (компьютер, маршрутизатор) может входить в несколько IP-сетей, поэтому каждый порт узла должен иметь собственный IP-адрес. Следовательно, IP-адрес узла идентифицирует не весь узел, а его сетевое соединение (порт), т. е. точку доступа модуля IP-протокола к сетевому интерфейсу.
IP-пакет содержит два адреса – отправителя и получателя. Оба адреса статические, т. е. не меняются на протяжении всего пути пакета. При доставке пакета адресату используются таблицы маршрутов, которые устанавливаются на каждом хосте сети. Различные протоколы маршрутизации, реализующие алгоритмы маршрутизации, обеспечивают построение и настройку этих таблиц.
IP-адресация обеспечивает пять различных классов сетей – классы А, В, C, D, E. Для кодирования каждого класса в IP-адресе выделяются несколько старших бит (рис. 38).
Сети класса А предназначены для использования крупными организациями. Это большие сети, для их адресации выделено всего 7 бит, зато для адресации хостов выделено 24 бита.
Сети класса В – это сети среднего размера (сети университетов, крупных компаний), для их адресации выделено 14 бит.
Сети класса С – это сети с небольшим количеством рабочих станций. Таких сетей много, поэтому для их адресации выделено 21 бит.
Адреса класса D используются при обращении к группам рабочих станций. Таких групп может быть очень много, поэтому их адресация осуществляется 28-битовыми двоичными числами. Групповая адресация используется для распространения информации от одного хоста сразу нескольким узлам, образующим группу. Номер группы указывается в поле адреса. Групповой адрес не делится на поля номера сети и номера узла, он обрабатывается маршрутизатором с помощью специального протокола IGMP (Internet Group Management Protocol).
Адреса класса Е зарезервированы для использования в будущем.
Рис. 38. Структура IP-адреса в сетях классов А-Е
27 Адресация в компьютерных сетях.
Адресация — существенный компонент, который помогает программному обеспечению скрывать детали физических сетей и создавать впечатление об интернете как о единой сети .Единицей сети Интернет является локальная вычислительная сеть, совокупность которых объединяется некоторой региональной (глобальной) сетью. В качестве соединительных линий в Интернете используются проводные линии связи, оптоволоконные, радиосвязь и спутниковая связь и др.
IP- адреса Интернета (IP-номер)Уникальный код компьютера в сети Интернет (IP-номер) состоит из четырех чисел со значениями от 0 до 255, разделенных точками (ххх.ххх.ххх.ххх.). Такая схема нумерации позволяет иметь в сети более четырех миллиардов компьютеров. Когда локальная сеть или отдельный компьютер впервые присоединяется к сети Интернет, специальная организация (провайдер) присваивает им IP-номер, гарантируя его уникальность и правильность подключения. Начало адреса определяет сеть, в которой расположен адресуемый компьютер, а крайний правый блок — компьютер в этой сети. Интернет знает, где искать указанную сеть, а сеть знает, где находится этот компьютер.
DNS-адреса Интернета Для удобства компьютерам в Интернете кроме цифровых адресов присваиваются собственные имена.. С этой целью была создана специальная система адресации — доменная система имен (Domain Name System) или сокращенно DNS. DNS-адрес вместо цифр содержит буквы, разделяемые точками на отдельные информационные блоки (домены).
URL-адрес документа состоит из трех частей и, в отличие от доменных имен, читается слева направо. В первой части указано имя прикладного протокола, по которому осуществляется доступ к данному ресурсу.Второй элемент — доменное имя компьютера, на котором хранится данный документ.Последний элемент адреса — путь доступа к файлу, содержащему Web-документ, на указанном компьютере.
28 Коммуникационные возможности компьютерных сетей.
Коммуникационные сети должны обеспечивать связь своих абонентов между собой. Абонентами могут выступать ЭВМ, сегменты локальных сетей, факс-аппараты или телефонные собеседники. Как правило, в сетях общего доступа невозможно предоставить каждой паре абонентов собственную физическую линию связи, которой они могли бы монопольно «владеть» и использовать в любое время. Поэтому в сети всегда применяется какой-либо способ коммутации абонентов, который обеспечивает разделение имеющихся физических каналов между несколькими сеансами связи и между абонентами сети. Каждый абонент соединен с коммутаторами индивидуальной линией связи, закрепленной за этим абонентом. Линии связи, протянутые между коммутаторами, разделяются несколькими абонентами, то есть используются совместно. Широкие возможности современной высокоскоростной цифровой сети «Компьютерных Коммуникационных Систем» позволяет реализовать любой необходимый Клиенту набор услуг с учетом всех потребностей современного мира.С использованием сети и новейших технологий предоставляются следующие услуги: — цифровая телефонная связь, — виртуальные частные сети,- передача данных и аренда каналов, — видеоконференцсвязь и видеотелефония, — высокоскоростной доступ в Интернет, — цифровое кабельное телевидение, — интеллектуальные услуги,- система контроля доступа, — удаленное управление объекта, — охранно-пожарная безопастность, — системная интеграция для корпоративных клиентов.
25.Компьютерные сети. Адресация в сетях.
Наибольшее распространение получили три схемы адресации узлов: Аппаратные (hardware) адреса — предназначены для сети небольшого или среднего размера, поэтому они не имеют иерархической структуры (адрес сетевого адаптера локальной сети). Такой адрес обычно используется только аппаратурой, поэтому его стараются сделать по возможности компактным и записывают в виде двоичного или шестнадцатеричного значения, например 0081005е24а8. Символьные адреса или имена. Эти адреса предназначены для запоминания людьми и поэтому обычно несут смысловую нагрузку. Символьные адреса легко использовать как в небольших, так и крупных сетях. Для работы в больших сетях символьное имя может иметь сложную иерархическую структуру, например ftp-archl.ucl.ac.uk. Числовые составные адреса. Символьные имена удобны для людей, но из-за переменного формата и потенциально большой длины их передача по сети не очень экономична. Поэтому во многих случаях для работы в больших сетях в качестве адресов узлов используют числовые составные адреса фиксированного и компактного форматов. Типичным представителями адресов этого типа являются IP- и IPX-адреса. В них поддерживается двухуровневая иерархия, адрес делится на старшую часть — номер сети и младшую — номер узла.
26.Технологии доступа в интернет.
DSL-соединение — Широкое распространение DSL (Digital Subscriber Line), что в буквальном переводе означает «цифровая абонентская линия», обусловлено тем обстоятельством, что в данном случае, так же как и в случае традиционных пользовательских модемов, используется обычная телефонная линия. ADSL— это асимметричное DSL-соединение, при котором скорость нисходящего трафика выше, чем скорость восходящего трафика. Технология ADSL обеспечивает скорость нисходящего трафика в пределах от 1,5 до 8 Мбит/с и скорость восходящего трафика от 640 Кбит/с до 1,5 Мбит/с. G.Lite, известное также как ADSL.Lite, — это упрощенный вариант ADSL, обеспечивающий скорость нисходящего трафика до 1,5 Мбит/с и скорость восходящего трафика до 512 Кбит/с. Как и в случае ADSL-соединения, здесь используется всего одна витая пара. RADSL (Rate Adaptive Digital Subscriber Line) — это вариант асимметричного DSL-соединения с адаптацией скорости соединения. SDSL (Single Line Digital Subscriber Line) — это симметричное по скорости нисходящего и восходящего трафиков однолинейное DSL-соединение. VDSL (Very High Bit-Rate Digital Subscriber Line) — это сверхвысокоскоростная DSL-линия.
27.Internet/Intranet – технологии. Протоколы tpc/ip.
Intranet — это внутренняя корпоративная сеть, построенная на интернет технологиях. С технической точки зрения интранет — это внутренний корпоративный web-портал, призванный решать задачи именно вашей компании; задачи, в первую очередь, по систематизации, хранению и обработке внутрикорпоративной информации.Стек протоколов TCP/IP (англ. Transmission Control Protocol/Internet Protocol) — набор сетевых протоколов разных уровней модели сетевого взаимодействия DOD, используемых в сетях. Протоколы работают друг с другом в стеке (англ. stack, стопка) — это означает, что протокол, располагающийся на уровне выше, работает «поверх» нижнего, используя механизмы инкапсуляции. Например, протокол TCP работает поверх протокола IP. Стек протоколов TCP/IP основан на модели сетевого взаимодействия DOD и включает в себя протоколы четырёх уровней: прикладного (application), транспортного (transport), сетевого (internet), уровня доступа к среде (network access). Протоколы этих уровней полностью реализуют функционал модели OSI. На стеке протоколов TCP/IP построено всё взаимодействие пользователей в IP-сетях. Стек является независимым от физической среды передачи данных.