Адресация узлов сети
Еще одной проблемой, которую нужно учитывать при объединении трех и более компьютеров, является проблема их адресации, точнее сказать адресации их сетевых интерфейсов 1) . Один компьютер может иметь несколько сетевых интерфейсов. Например, для образования физического кольца каждый компьютер должен быть оснащен как минимум двумя сетевыми интерфейсами для связи с двумя соседями. А для создания полносвязной структуры из N компьютеров необходимо, чтобы у каждого из них имелся N-1 интерфейс.
Адреса могут быть числовыми (например, 129.26.255.255) и символьными (site.domain.ru). Один и тот же адрес может быть записан в разных форматах, скажем, числовой адрес в предыдущем примере 129.26.255.255 может быть записан и в шестнадцатеричном формате цифрами — 81.1a.ff.ff.
Адреса могут использоваться для идентификации не только отдельных интерфейсов, но и их групп (групповые адреса). С помощью групповых адресов данные могут направляться сразу нескольким узлам. Во многих технологиях компьютерных сетей поддерживаются так называемые широковещательные адреса. Данные, направленные по такому адресу, должны быть доставлены всем узлам сети.
Множество всех адресов, которые являются допустимыми в рамках некоторой схемы адресации, называется адресным пространством. Адресное пространство может иметь плоскую (линейную) (рис. 4.9) или иерархическую (рис. 4.10) организацию. В первом случае множество адресов никак не структурировано.
Рис. 4.9. Плоское адресное пространство.
При иерархической схеме адресации оно организовано в виде вложенных друг в друга подгрупп, которые, последовательно сужая адресуемую область, в конце концов определяют отдельный сетевой интерфейс.
Рис. 4.10. Иерархическая структура адресного пространства.
На рис. 4.10 показана трехуровневая структура адресного пространства, при которой адрес конечного узла задается тремя составляющими: идентификатором группы (K), в которую входит данный узел, идентификатором подгруппы (L) и, наконец, идентификатором узла (n), однозначно определяющим его в подгруппе. Иерархическая адресация во многих случаях оказывается более рациональной, чем плоская. В больших сетях, состоящих из многих тысяч узлов, использование плоских адресов может привести к большим издержкам — конечным узлам и коммуникационному оборудованию придется работать с таблицами адресов, состоящими из тысяч записей. А иерархическая система адресации позволяет при перемещении данных до определенного момента пользоваться только старшей составляющей адреса, затем для дальнейшей локализации адресата следующей по старшинству частью, и в конечном счете — младшей частью. Примером иерархически организованных адресов служат обычные почтовые адреса, в которых последовательно уточняется местонахождение адресата: страна, город, улица, дом, квартира.
К адресу сетевого интерфейса и схеме его назначения можно предъявить несколько требований:
- адрес должен уникально идентифицировать сетевой интерфейс в сети любого масштаба;
- схема назначения адресов должна сводить к минимуму ручной труд администратора и вероятность дублирования адресов;
- желательно, чтобы адрес имел иерархическую структуру, удобную для построения больших сетей;
- адрес должен быть удобен для пользователей сети, а это значит, что он должен допускать символьное представление, например Server3 или www.cisco.com;
- адрес должен быть по возможности компактным, чтобы не перегружать память коммуникационной аппаратуры – сетевых адаптеров, маршрутизаторов и т.п.
- отдельных интерфейсов;
- их групп (групповые адреса);
- сразу всех сетевых интерфейсов сети (широковещательные адреса).
- числовыми и символьными;
- аппаратными и сетевыми;
- плоскими и иерахическими.
Экзамен / Адресация узлов в сети
Одной из важных проблем, которую нужно учитывать при объединении трех и более компьютеров, является проблема их адресации, точнее сказать адресации их сетевых интерфейсов. Один компьютер может иметь несколько сетевых интерфейсов. Например, для образования физического кольца каждый компьютер должен быть оснащен как минимум двумя сетевыми интерфейсами для связи с двумя соседями. А для создания полносвязной структуры из N компьютеров необходимо, чтобы у каждого из них имелся N-1 интерфейс.
Адреса могут быть числовыми (например, 129.26.255.255) и символьными (site.domain.ru). Один и тот же адрес может быть записан в разных форматах, скажем, числовой адрес в предыдущем примере 129.26.255.255 может быть записан и в шестнадцатеричном формате цифрами — 81.1a.ff.ff.
Адреса могут использоваться для идентификации не только отдельных интерфейсов, но и их групп (групповые адреса). С помощью групповых адресов данные могут направляться сразу нескольким узлам. Во многих технологиях компьютерных сетей поддерживаются так называемые широковещательные адреса. Данные, направленные по такому адресу, должны быть доставлены всем узлам сети.
Множество всех адресов, которые являются допустимыми в рамках некоторой схемы адресации, называется адресным пространством. Адресное пространство может иметь плоскую (линейную) (Рис. 3 .1) или иерархическую (Рис. 3 .2) организацию. В первом случае множество адресов никак не структурировано.
Рис. 3.1 Плоское адресное пространство.
При иерархической схеме адресации оно организовано в виде вложенных друг в друга подгрупп, которые, последовательно сужая адресуемую область, в конце концов определяют отдельный сетевой интерфейс.
Рис. 3.2 Иерархическая структура адресного пространства.
На Рис. 3 .2 показана трехуровневая структура адресного пространства, при которой адрес конечного узла задается тремя составляющими: идентификатором группы (K), в которую входит данный узел, идентификатором подгруппы (L) и, наконец, идентификатором узла (n), однозначно определяющим его в подгруппе. Иерархическая адресация во многих случаях оказывается более рациональной, чем плоская. В больших сетях, состоящих из многих тысяч узлов, использование плоских адресов может привести к большим издержкам — конечным узлам и коммуникационному оборудованию придется работать с таблицами адресов, состоящими из тысяч записей. А иерархическая система адресации позволяет при перемещении данных до определенного момента пользоваться только старшей составляющей адреса, затем для дальнейшей локализации адресата следующей по старшинству частью, и в конечном счете — младшей частью. Примером иерархически организованных адресов служат обычные почтовые адреса, в которых последовательно уточняется местонахождение адресата: страна, город, улица, дом, квартира.
К адресу сетевого интерфейса и схеме его назначения можно предъявить несколько требований:
- адрес должен уникально идентифицировать сетевой интерфейс в сети любого масштаба;
- схема назначения адресов должна сводить к минимуму ручной труд администратора и вероятность дублирования адресов;
- желательно, чтобы адрес имел иерархическую структуру, удобную для построения больших сетей;
- адрес должен быть удобен для пользователей сети, а это значит, что он должен допускать символьное представление, например Server3 или www.cisco.com;
- адрес должен быть по возможности компактным, чтобы не перегружать память коммуникационной аппаратуры – сетевых адаптеров, маршрутизаторов и т.п.
- отдельных интерфейсов;
- их групп (групповые адреса);
- сразу всех сетевых интерфейсов сети (широковещательные адреса).
- числовыми и символьными;
- аппаратными и сетевыми;
- плоскими и иерахическими.
4.2 Адресация узлов сети
Еще одной проблемой, которую нужно учитывать при объединении трех и более компьютеров, является проблема их адресации, точнее сказать адресации их сетевых интерфейсов 3 . Один компьютер может иметь несколько сетевых интерфейсов. Например, для образования физического кольца каждый компьютер должен быть оснащен как минимум двумя сетевыми интерфейсами для связи с двумя соседями. А для создания полносвязной структуры из N компьютеров необходимо, чтобы у каждого из них имелся N-1 интерфейс.
Адреса могут быть числовыми (например, 129.26.255.255) и символьными (site.domain.ru). Один и тот же адрес может быть записан в разных форматах, скажем, числовой адрес в предыдущем примере 129.26.255.255 может быть записан и в шестнадцатеричном формате цифрами — 81.1a.ff.ff.
Адреса могут использоваться для идентификации не только отдельных интерфейсов, но и их групп (групповые адреса). С помощью групповых адресов данные могут направляться сразу нескольким узлам. Во многих технологиях компьютерных сетей поддерживаются так называемые широковещательные адреса. Данные, направленные по такому адресу, должны быть доставлены всем узлам сети.
Множество всех адресов, которые являются допустимыми в рамках некоторой схемы адресации, называется адресным пространством. Адресное пространство может иметь плоскую (линейную) (рис. 4.9) или иерархическую (рис. 4.10) организацию. В первом случае множество адресов никак не структурировано.
Рис. 4.9. Плоское адресное пространство.
При иерархической схеме адресации оно организовано в виде вложенных друг в друга подгрупп, которые, последовательно сужая адресуемую область, в конце концов определяют отдельный сетевой интерфейс.
Рис. 4.10. Иерархическая структура адресного пространства.
На рис. 4.10 показана трехуровневая структура адресного пространства, при которой адрес конечного узла задается тремя составляющими: идентификатором группы (K), в которую входит данный узел, идентификатором подгруппы (L) и, наконец, идентификатором узла (n), однозначно определяющим его в подгруппе. Иерархическая адресация во многих случаях оказывается более рациональной, чем плоская. В больших сетях, состоящих из многих тысяч узлов, использование плоских адресов может привести к большим издержкам — конечным узлам и коммуникационному оборудованию придется работать с таблицами адресов, состоящими из тысяч записей. А иерархическая система адресации позволяет при перемещении данных до определенного момента пользоваться только старшей составляющей адреса, затем для дальнейшей локализации адресата следующей по старшинству частью, и в конечном счете — младшей частью. Примером иерархически организованных адресов служат обычные почтовые адреса, в которых последовательно уточняется местонахождение адресата: страна, город, улица, дом, квартира.
К адресу сетевого интерфейса и схеме его назначения можно предъявить несколько требований:
- адрес должен уникально идентифицировать сетевой интерфейс в сети любого масштаба;
- схема назначения адресов должна сводить к минимуму ручной труд администратора и вероятность дублирования адресов;
- желательно, чтобы адрес имел иерархическую структуру, удобную для построения больших сетей;
- адрес должен быть удобен для пользователей сети, а это значит, что он должен допускать символьное представление, например Server3 или www.cisco.com;
- адрес должен быть по возможности компактным, чтобы не перегружать память коммуникационной аппаратуры – сетевых адаптеров, маршрутизаторов и т.п.
- отдельных интерфейсов;
- их групп (групповые адреса);
- сразу всех сетевых интерфейсов сети (широковещательные адреса).
- числовыми и символьными;
- аппаратными и сетевыми;
- плоскими и иерархическими.