Что понимается под событием в сетевой модели

1.2 Основные понятия сетевого планирования

Следует выделить следующие понятия, необходимые для сетевого планирования.

Работа – производственный процесс, требующий затрат времени и материальных ресурсов и приводящий к достижению определенных результатов.

По своей физической природе работы можно рассматривать как действие (например, заливка фундамента бетоном, составление заявки на материалы, изучение конъюнктуры рынка), процесс (пример — старение отливок, выдерживание вина, травление плат) и ожидание (процесс, требующий только затраты времени и не потребляющий никаких ресурсов; является технологическим (твердение цементной стяжки) или организационным (ожидание сухой погоды) перерывом между работами, непосредственно выполняемым друг за другом.

По количеству затрачиваемого времени работа может быть:

  • действительной, то есть протяжённым во времени процессом, требующим затрат ресурсов;
  • фиктивной (или зависимостью), не требующей затрат времени и представляющей связь между какими-либо работами: передача измененных чертежей от конструкторов к технологам, сдача отчета о технико-экономических показателях работы цеха вышестоящему подразделению.

1.3 Правила построения сетевых моделей

  • какие работы должны быть завершены до начала данной работы;
  • какие работы должны быть начаты после завершения данной работы;
  • какие работы необходимо выполнять одновременно с выполнением данной работы.

Источник

Практические занятия по сетевым моделям

Сетевое планирование и управление (СПУ) — это графоаналитический метод управления процессами создания (проектирования) лю­бых систем. Сетевой график — полная графическая модель комплекса работ, направленных на выполнение единого задания, в которой (мо­дели) определяются логические взаимосвязи и последовательность ра­бот.

Сетевая модель – это графическое изображение технологической последовательности работ.

Элементы сетевой модели.

Основными элементами сетевого графика являются работа (изоб­ражается стрелкой) и событие (изображается кружком).

Работа – это производственный процесс, требующий затрат времени и ресурсов, а также непроизводительного времени. (Работа это процесс или действие, которые нужно совершить, что­бы перейти от одного события к другому). Если для перехода от одного события к другому не требуется ни затрат времени, ни затрат труда, то взаимная связь таких событий изображается пунктирной стрелкой и называется фиктивной работой. Фиктивная работа представляет собой, таким образом, логическую связь между событиями и показы­вает зависимость начала выполнения какой-либо работы от резуль­татов выполнения другой.

Фактическая работа в сетевой модели обозначается:

Фиктивная работа:

Событие — это фиксированный момент времени, который пред­ставляет собой одновременно окончание предыдущей работы, т. е. ее результат (исключение — начальное событие) и начало последующей работы (исключение — конечное событие).

Изображается:

i – индекс (номер) события.

Трi – возможно ранний срок совершения события i;

Раз событие не может произойти, пока не будут выполнены все предшествовавшие ему операции, то ранний срок свершения собы­тия определяется наибольшей из всех продолжительностей предше­ствовавших этому событию путей.

Читайте также:  Пример разработки компьютерной сети

Тпi – допустимо поздний срок совершения события i;

Самое позднее свершение события не должно приводить к увели­чению продолжительности критического пути, поэтому поздний срок свершения события определяется разностью между продолжитель­ностью критического пути и наибольшей из всех продолжительностей последующих за этим событием путей.

Ri – резерв времени события.

Любая работа соединяет только два события и отражает процесс перехода от одного события к другому.

Событие, из которого выходит стрелка, называется предшествующим по отношению к данной работе. Событие, в которое стрелка входит, является последующим.

Одно и то же событие (кроме начального и конечного) одновременно является и предшествующим и последующим.

Правила построения сетевых моделей.

  1. В сетевой модели не должно быть тупиков, т.е. событий, кроме завершающего, из которого не выходило бы ни одной работы.
  2. В сетевой модели не должно быть событий, кроме исходного, в которое не входило бы ни одной стрелки.
  3. В сетевой модели не должно быть замкнутых контуров, т.е. путей, соединяющих данное событие с ним же самим. Модель должна быть ориентирована слева направо, необходимо стремиться к отсутствию пересечения работ.
  4. Каждая работа кодируется шифром двух событий.

Работа i-j – шифр работы, причем j>i i – начальное событие для данной работы; j – конечное событие, результат. Виды путей сетевой модели Путь в сетевой модели представляет собой непрерывную технологическую последовательность работ от исходного события до завершающего. Такой путь называют полным. При этом понятие «путь» распространяется на любую последовательность работ по направлению стрелок. Длина пути определяется суммой продолжительности лежащих на нем работ. Путей в сетевой модели может быть несколько. В отличие от полных путей, имеются еще и укороченные пути, которые отсчитываются от начала модели до данного события (предшествующий путь) или от конца ее до этого же события (последующий путь). В том и в другом случае эти пути представляют собой части полного пути (частичные пути). Сравнением полных путей выявляется такой, суммарная продолжительность работ на котором имеет максимальное значение. Этот путь называется критическим. Он определяет время, необходимое для выполнения программы всех работ, включенных в сетевую модель. Все работы, лежащие на критическом пути, называются критическими, и от их продолжительности зависит конечный срок выполнения программы. Сокращение или увеличение продолжительности критической работы соответственно сокращает или увеличивает общую продолжительность выполнения программы. Кроме того, существует еще подкритический путь. Это тоже полный путь, имеющий продолжительность, близкую с продолжительности критического пути. Ненапряженные пути – это полные пути, продолжительность которых существенно меньше продолжительности критического пути. Характеристики работ сетевой модели.

  1. Возможно раннее начало работы i-j:

tрнi-j = Трi Поскольку операция не может быть начата, пока не свершится ее начальное событие, то ранний срок начала операции совпадает с ранним сроком свершения ее начального события.

  1. Возможно раннее окончание работы i-j:
Читайте также:  Принцип управления компьютерная сеть

tроi-j = tрнi-j + ti-j

  1. Допустимо позднее окончание работы i-j

tпоi-j = Tnj

  1. Допустимо позднее начало работы i-j

tпнi-j = tпоi-j – ti-j Выполнение операции не должно вызывать увеличения продол­жительности критического пути, а следовательно, и позднего срока свершения конечного события операции. Так как операция имеет оп­ределенную продолжительность, го позднее начало операции вы­числяется как разность между поздним сроком свершения ее ко­нечного события и продолжительностью самой операции. Резервы времени работ в сетевой модели. В общем случае работы сетевой модели могут обладать следующими резервами времени:

  • полный резерв;
  • свободный резерв.

Полный резерв времени у работ, не лежащих на критическом пути, определяется величиной, на которую можно сдвинуть начало данной работы, либо увеличить ее продолжительность, не изменяя при этом конечного срока сетевой модели, т.е. продолжительности ее критического пути. Rпi-j = Тпj – Трi – ti-j Свободный резерв времени у работ, не лежащих на критическом пути, определяется величиной, на которую можно сдвинуть начало данной работы, либо увеличить ее продолжительность, не изменяя при этом ранних сроков начала последующих работ. Rсвi-j = Трj – Трi – ti-j Коэффициент напряженности работ в сетевой модели. На стадии оперативного управления нередко приходиться решать вопрос о целесообразности того или иного перераспределения ресурсов, например, при выбытии из строя оборудования, занятого на критической работе, необходимо принять решение о переключении аналогичного оборудования с другой работы, располагающей резервами времени. При равных резервах у работ следует рассчитывать их коэффициент напряженности. Аналитически: где Т’кр(мах) – продолжительность отрезка критического пути, не совпадающего с максимальным путем, проходящим через данную работу. Вероятностные расчеты сетевого моделирования. После определения критического пути и его продолжительности эту продолжительность сравнивают с установленной продолжительностью работ, называемой директивным сроком – Т дир – обязательным к исполнению. Если такое сравнение дает удовлетворительный результат (Ткр <Тдир), то определяют вероятность совершения конечного события в сроки не позднее Тдир. где Ф – функция Лапласа (функция нормального распределения); — среднеквадратическое отклонение работ, лежащих на критическом пути от ожидаемого времени Tож. tmin ij – оптимистическая оценка времени выполнения работ, т.е. продолжительность выполнения работ при наиболее благоприятных условиях; tmax ij — пессимистическая оценка времени выполнения работ, т.е. продолжительность выполнения работ при наиболее неблагоприятных условиях. c – количество работ, лежащих на критическом пути. Если Ркр →Ткр нов 0,35 0,65 Вероятность выполнения работ в директивные сроки велика. В этом случае вероятней всего должна быть проведена оптимизация сетевой модели по материальным ресурсам, поскольку высокое значение вероятности или, иными словами, малое значение Ткр может быть достигнуто проще всего неоправданно высокими материальными затратами. Если сравнение Ткр>Тдир, то необходима оптимизация модели по времени. 5

Читайте также:  Технологии локальных вычислительных сетей это

Источник

19. Понятие событие, его параметры в сетевом графике

Каждая работа начинается и кончается «событием», которое обозначается кружочком, например 5 , где цифра 5 обозначает название данного события. Событие — это результат выполнения одной или нескольких работ, являющийся необходимым для начала последующих работ. Предшествующее событие является отправной точкой для работы, а последующее событие является ее результатом. События в отличие от работ совершаются в определенные моменты времени, не используя при этом никаких ресурсов. Начало выполнения комплекса работ есть начальное событие. Момент завершения всех работ есть конечное событие. Любой сетевой график имеет одно исходное (начальное) и одно завершающее (конечное) событие. Любая работа — стрелка — соединяет только два события. Событие, из которого стрелка выходит, называется предшествующим данной работе. Событие, в которое стрелка входит, является по отношению к ней последующим данной работе. Одно и то же событие, кроме исходного и завершающего, является по отношению к одной работе предшествующим, а к другой — последующим. Такое событие называется промежуточным. События могут быть простыми и сложными. Простые события имеют только одну входящую и одну выходящую работу. Сложные события имеют несколько входящих или несколько выходящих работ. Деление событий на простые и сложные имеет очень большое значение при расчете сетевых графиков. Событие считается свершившимся тогда, когда будет закончена самая длинная по продолжительности из всех входящих в него работ.

Коэффициент напряженности. Методика его расчета.

Коэффициент напряженности работы (пути kнij) – это отношение продолжительности несовпадающих (заключенных между одними и теми же событиями) отрезков пути, одним из которых является путь максимальной продолжительности, проходящий через данную работу, а другим – критический путь. Он позволяет определить степень трудности выполнения в срок каждой группы работ некритического пути. Если совпадающую с критическим путем величину отрезка пути обозначить Т  Lкр, длину критического пути – ТLкр, а протяженность максимального пути, проходящего через данные работы – ТLмах, то коэффициент напряженности данного пути:

    Порядок составления сетевых графиков

График сначала строится в полигональной форме. 1. определяем номенклатуру всех работ 2. в соответствии с регламентациями технологий определяем логическую последовательность всех выполняемых работ с учетом трудозатрат 3. составляем таблицу с исходными данными tp(i) — ранний срок наступления события tп(i) — поздний срок наступления события R(i) – резерв времени i-го события Рпij = . Рсij = . Рi = . = , = ,

22.Основные положения методики оптимизации сетевых графиков

23.Методы управления персоналом.

  1. место коллективов и отдельных работников в системе производства и управления;
  2. их права, обязанности и меры ответственности;
  3. способы координации их действий и взаимосвязи в процессе производства и управления;

Источник

Оцените статью
Adblock
detector