Сетевая модель
Экономико-математические модели могут строиться не только в виде формул (аналитическое представление модели), но и в виде числовых примеров (численное представление), в виде таблиц (матричное) и в виде графов (сетевое представление).
В анализе хозяйственной деятельности используется метод сетевого планирования. Он базируется на применении сетевых графиков. Последние выражаются в виде определенной цепи работ и событий, связанных технологической последовательностью. Под работой здесь понимается процесс, который предшествует возникновению определенного события. Работа включает как технологические процессы, так и время ожидания, сопряженное с перерывами в этих процессах. Под событием понимают результат работы, без которого не могут быть начаты другие работы. В сетевых графиках события обозначаются кружками, где внутри пишется номер. Стрелки, помещающиеся между кружками, выражают намеченную последовательность выполнения работ. Числа, указанные возле стрелок, характеризуют намеченную длительность выполнения работ. С помощью сетевых графиков достигается либо оптимизация времени выполнения, либо оптимизация величины себестоимости осуществляемых работ.
Модель сетевая (модель управления и планирования производством) — план выполнения некоторой совокупности взаимосвязанных операций (работ) заданный в специфической форме сети. Примером данной модели может служить сетевой график.
В кружках указаны номера событий, соединительными линиями (стрелками) работа, а цифры над ними указана ориентировачная стоимость, продолжительность или трудоемкость работ. В соответствии элементам графов (дугам и вершинам) ставятся числовые оценки (параметры операции: продолжительность, стоимость или трудоемкость). Что позволяет осуществлять глубокий анализ, а в ряде случаев оптимизацию.
Сетевая модель определяет с любой требуемой степенью детализации состав работ комплекса и порядок выполнения их во времени.
Отличительной особенностью сетевой модели в сравнении с другими формами представления планов является четкое определение всех временных взаимосвязей операций.
Сетевые модели используются не только как средство решения разнообразных задач планирования и прогнозирования. Сетевые модели также служат для построения специального класса системы организационного управления, получивших название систем сетевого планирования и управления.
Среди различных методом систем сетевого планирования и управления наиболее распространены: метод критического пути — анализ состояния процесса в каждый заданный момент времени и определение последовательности работ с целью избежания задержки времени выполнения плана к намеченному сроку и метод оценки пересмотра программ.
1. Сетевая модель и ее основные элементы.
Сетевая модель представляет собой план выполнения некоторого комплекса взаимосвязанных работ (операций), заданного в специфической форме сети, графическое изображение которой называется сетевым графиком. Отличительной особенностью сетевой модели является четкое определение всех временных взаимосвязей предстоящих работ.
Главными элементами сетевой модели являются событиями и работы
Термин работа используется в СПУ в широком смысле.Во-первых, это действительная работа — протяженный во временипроцесс, требующий затрат ресурсов (например, сборка изделия, испытание прибора и т.п.). Каждая действительная работа, должна быть конкретной, четко описанной и иметь ответственного исполнителя.
Во-вторых, это ожидание — протяженный во времени процесс,не требующий затрат труда (например, процесс сушки после окраски, старения металла, твердения бетона и т.п.).
В-третьих, это зависимость, или фиктивная работа — логическая связь между двумя или несколькими работами (события), не требующими затрат труда, материальных ресурсов или времени. Она указывает, что возможность одной работы непосредственно зависит от результатов другой. Естественно, что продолжительность фиктивной работы принимается равной нулю.
Событие — это момент завершения какого-либо процесса, отражающий отдельный этап выполнения проекта. Событие может являться частным результатом отдельной работы или суммарным результатом нескольких работ. Событие может свершиться только тогда, когда закончатся все работы, ему предшествующие. Последующие работы могут начаться только тогда, когда событие свершится. Отсюда двойственный характер события: для всех непосредственно предшествующих ему работ оно является конечным, а для всех непосредственно следующих за ним — начальным. При этом предполагается, что событие не имеет продолжительности и свершается как бы мгновенно. Поэтому каждое событие, включаемое в сетевую модель, должно быть полно, точно и всесторонне определено, его формулировка должна включать в себя результат всех непосредственно предшествующих ему работ.
Среди событий сетевой модели выделяют исходное и завершающее события. Исходное событие не имеет предшествующих работ и событий, относящихся к представленному в модели комплексу работ. Завершающее событие не имеет последующих работ и событий.
События на сетевом графике (или, как еще говорят, на графе)изображаются кружками (вершинами графа), а работы — стрелками(ориентированными дугами), показывающими связь между работами. Пример фрагмента сетевого графика представлен на рис 1:
На рис. 2, а приведен сетевой график задачи моделирования и построения оптимального плана некоторого экономического объекта. Чтобы решить эту задачу, необходимо провести следующие работы: А – сформулировать проблему исследования; В5 — математическую модель изучаемого объекта; В — собрать информацию; Г — выбрать метод решения задачи; Д — построить и отладить программу для ЭВМ; Е — рассчитать оптимальный план; Ж — передать результаты расчета заказчику. Цифрами на графике обозначены номера событий, к которым приводит выполнение соответствующих работ.
Из графика, например, следует, что работы В и Г можно начать выполнять независимо одна от другой только после свершения события 3, т.е. когда выполнены работы А и Б; работу Д — после свершения события 4, когда выполнены работы А, Б и Г; а работу Е можно выполнить только после наступления события 5, т.е. при выполнении всех предшествующих ему работ А, Б, В, Г и Д.
В сетевой модели, представленной на рис. 2 а, нет числовых оценок. Такая сеть называется структурной. Однако на практике чаще всего используются сети, в которых заданы оценки продолжительности работ (указываемые в часах, неделях, декадах, месяцах и т.д. над соответствующими стрелками), а также оценки других параметров, например трудоемкости, стоимости и т.п. Именно такие сети мы будем рассматривать в дальнейшем.
Но прежде сделаем следующее замечание. В рассмотренных примерах сетевые графики состояли из работ и событий. Однако может быть и иной принцип построения сетей — без событий. В такой сети вершины графа (например, изображенные прямоугольниками) означают определенные работы, а стрелки — зависимости между этими работами, определяющие порядок их выполнения. В качестве примера сетевой график «события — работы» задачи моделирования и построения оптимального плана некоторого экономического объекта, приведенный на рис. 2 а, представлен в виде сети «работы — связи» на рис. 2 б. А сетевой график «события — работы» той же задачи, но с неудачно составленным перечнем работ, представлен на рис. 2 в (см. правило 3 в разд. 3).
Следует отметить, что сетевой график «работы — связи» в отличие от графика «события — работы» обладает известными преимуществами: не содержит фиктивных работ, имеет более простую технику построения и перестройки, включает только хорошо знакомое исполнителям понятие работы без менее привычного понятия события. Вместе с тем сети без событий оказываются значительно более громоздкими, так как событий обычно значительно меньше, чем работ (показатель сложности сети, равный отношению числа работ к числу событий, как правило, существенно больше единицы). Поэтому эти сети менее эффективны с точки зрения управления комплексом. Этим и объясняется тот факт, что (при отсутствии в целом принципиальных различий между двумя формами представления сети) в настоящее время наибольшее распространение получили сетевые графики «события — работы».