Древовидная топология компьютерных сетей

Туториал по компьютерным сетям. Часть 4

Топология определяет структуру сети о том, как все компоненты взаимосвязаны друг с другом. Существует два типа топологии — физическая и логическая топология.

Физическая топология — это геометрическое представление всех узлов в сети.

Топология шины

Топология шины спроектирована таким образом, что все станции подключены через один кабель, известный как магистральный кабель.

Каждый узел либо подключается к магистральному кабелю с помощью отводного кабеля, либо напрямую подключается к магистральному кабелю.

Когда узел хочет отправить сообщение по сети, он помещает сообщение по сети. Все станции, доступные в сети, получат сообщение независимо от того, адресовано оно им или нет.

Топология шины в основном используется в сетях стандарта 802.3 (ethernet) и 802.4.

Конфигурация шинной топологии довольно проста по сравнению с другими топологиями.

Магистральный кабель считается «одной полосой», по которой сообщение передается на все станции.

Наиболее распространенным методом доступа в топологиях шины является CSMA (множественный доступ с контролем несущей).

CSMA: это управление доступом к среде, используемое для управления потоком данных, чтобы сохранить целостность данных, то есть пакеты не теряются. Существует два альтернативных способа решения проблем, возникающих, когда два узла отправляют сообщения одновременно.

CSMA CD ( Обнаружение столкновения ) — это метод доступа, используемый для обнаружения столкновения. Как только столкновение обнаружено, отправитель прекратит передачу данных. Поэтому работает на « восстановление после столкновения ».

CSMA CA (предотвращение столкновений) — это метод доступа, используемый для предотвращения коллизий путем проверки, занята среда передачи или нет. Если он занят, то отправитель ожидает, пока носитель не станет свободным. Эта техника эффективно снижает вероятность столкновения. Не работает «восстановление после столкновения».

Преимущества топологии шины

В топологии шины узлы напрямую подключаются к кабелю без прохождения через Хаб. Поэтому первоначальная стоимость установки невысока.

Умеренные скорости передачи данных

Коаксиальные кабели или кабели витой пары в основном используются в шинных сетях, поддерживающих скорость до 100 Мбит / с.

Топология шины — это привычная технология, поскольку методы установки и устранения неполадок хорошо известны, а компоненты оборудования легко доступны.

Сбой в одном узле не повлияет на другие узлы.

Читайте также:  Какие топологии лежат в основе любой компоновки сети

Недостатки шинной топологии

Топология шины довольно проста, но все же требует большого количества кабелей.

Сложное устранение неполадок

Требуется специальное испытательное оборудование для определения неисправностей кабеля. Если в кабеле возникнет какая-либо неисправность, это нарушит связь для всех узлов.

Если два узла отправляют сообщения одновременно, то сигналы обоих узлов сталкиваются друг с другом.

Изменение конфигурации затруднено

Добавление новых устройств в сеть замедлит работу сети.

Затухание — это потеря сигнала, что приводит к проблемам со связью. Повторители используются для регенерации сигнала.

Кольцевая топология

Кольцевая топология похожа на шинную топологию, но со связанными концами.

Узел, который получает сообщение от предыдущего компьютера, будет повторно передан следующему узлу.

Данные передаются в одном направлении, т.е. однонаправлено.

Данные передаются в одном цикле, который непрерывно известен как бесконечный цикл.

Он не имеет завершенных концов, т. Е. Каждый узел связан с другим узлом и не имеет конечной точки.

Данные в кольцевой топологии передаются по часовой стрелке.

Наиболее распространенным методом доступа кольцевой топологии является передача токена .

Передача токена — это метод доступа к сети, при котором токен передается от одного узла к другому.

Маркер — это кадр, который циркулирует по сети.

Работа прохождения токена

Токен перемещается по сети и передается с компьютера на компьютер, пока не достигнет места назначения.

Отправитель изменяет токен, добавляя адрес вместе с данными.

Данные передаются с одного устройства на другое, пока адрес назначения не совпадет. Как только токен получен устройством-получателем, он отправляет подтверждение отправителю.

В кольцевой топологии токен используется в качестве носителя.

Преимущества кольцевой топологии

Неисправные устройства могут быть удалены из сети без отключения сети.

Доступно множество аппаратных и программных средств для работы и мониторинга сети.

Витая пара недорогая и легко доступна. Поэтому стоимость установки очень низкая.

Это более надежная сеть, поскольку система связи не зависит от одного хост-компьютера.

Недостатки кольцевой топологии

Сложное устранение неполадок

Требуется специальное испытательное оборудование для определения неисправностей кабеля. Если в кабеле возникнет какая-либо неисправность, это нарушит связь для всех узлов.

Выход из строя на одной станции ведет к выходу из строя всей сети.

Изменение конфигурации затруднено

Добавление новых устройств в сеть замедлит работу сети.

Задержка связи прямо пропорциональна количеству узлов. Добавление новых устройств увеличивает задержку связи.

Топология звезды

Топология «звезда» — это схема сети, в которой каждый узел подключен к центральному концентратору, коммутатору или центральному компьютеру.

Читайте также:  Локально вычислительная сеть лвс прокладка

Центральный компьютер называется сервером , а периферийные устройства, подключенные к серверу, называются клиентами .

Коаксиальный кабель или кабели RJ-45 используются для подключения компьютеров.

Концентраторы или коммутаторы в основном используются в качестве соединительных устройств в топологии физической звезды .

Топология «звезда» — самая популярная топология в реализации сети.

Преимущества топологии Star

Эффективное устранение неполадок.

Устранение неполадок довольно эффективно в топологии «звезда» по сравнению с топологией шины. В топологии шины менеджер должен проверять километры кабеля. В топологии «звезда» все станции подключены к централизованной сети. Поэтому администратор сети должен обратиться к единственной станции, чтобы устранить проблему.

Сложные функции управления сетью могут быть легко реализованы в топологии «звезда». Любые изменения, сделанные в топологии «звезда», автоматически учитываются.

Поскольку каждая станция подключена к центральному концентратору с помощью собственного кабеля, следовательно, отказ в одном кабеле не повлияет на всю сеть.

Топология Star — это знакомая технология, поскольку ее инструменты экономически эффективны.

Он легко расширяется, так как новые станции могут быть добавлены к открытым портам на концентраторе.

Сети с топологией Star экономичны, так как используют недорогой коаксиальный кабель.

Высокая скорость передачи данных

Он поддерживает пропускную способность около 10 гигабит/ с. Ethernet 100BaseT — одна из самых популярных топологических сетей Star.

Недостатки топологии Star

Если центральный концентратор или коммутатор выходит из строя , то все подключенные узлы не смогут обмениваться данными друг с другом.

Иногда прокладка кабеля затруднена, когда требуется значительный объем прокладки.

Источник

4. Древовидные топологии

Сеть с древовидной топологией(рис. 5.4,a) строится по схеме строго двоичного дерева, где каждый узел более высокого уровня связан с двумя узлами следующего по порядку более низкого уровня. Узел, находящийся на более вы-соком уровне, называетсяродительским, а два подключенных к нему нижерас-положенных узла –дочерними. В свою очередь, каждый дочерний узел выступает в качестве родительского для двух узлов следующего более низкого уровня. Каждый узел связан только с двумя дочерними и одним родительским.

Рис. 5.4. Древовидная топология: а– стандартное дерево;б– «толстое» дерево

Древовидная сеть характеризуется следующими параметрами: ;d = 3;I=N– 1;B= 1, где– высота дерева (количество уровней в древовидной сети). Топология двоичного дерева была использована в мульти-процессорной системеDADOиз 1023 узлов, разработанной в Колумбийском университете.

При больших объемах пересылок между несмежными узлами древовидная топология недостаточно эффективна, поскольку сообщения должны проходить через один или несколько промежуточных звеньев. Очевидно, что на более высоких уровнях сети вероятность затора из-за недостаточно высокой пропуск-ной способности линий связи выше. Этот недостаток устраняется с помощью топологии, называемой «толстым» деревом (рис. 5.4,б).

Читайте также:  Вопросы к экзаменам по компьютерным сетям

Идея «толстого» дерева состоит в увеличении пропускной способности коммуникационных линий на прикорневых уровнях сети. С этой целью на верх-них уровнях сети родительские и дочерние узлы связываются не одним, а не-сколькими каналами, причем чем выше уровень, тем больше число каналов. На рис. 5.4, бэто отображено в виде множественных линий между узлами верхних уровней. Топология «толстого» дерева реализована в вычислительной системе СМ-5.

5. Решетчатые топологии

Решетчатые(mesh) топологии ВС ориентированы на решение научно-технических задач, связанных с обработкой массивов. Их конфигурация опреде-ляется видом и размерностью массива.

Рис. 5.5. Решетчатые топологии: а– плоская;б – цилиндрическая;

вг – тороидальная;д– витая тороидальная

Простейшими примерами для одномерных массивов служат цепочка и кольцо. Для двумерных массивов данных наиболее подходит топология плоской прямоугольной матрицы узлов, каждый из которых соединен с ближайшим сосе-дом (рис. 5.5, а). Такая сеть размерностиm×m(m=) имеет следующие харак-теристики:D= 2(m – 1);d = 4;I = 2N – 2m;B=m.

Если провести операцию свертывания(wraparound) плоской матрицы, соединив информационными трактами одноименные узлы левого и правого столбцов или одноименные узлы верхней и нижней строк плоской матрицы, то из плоской конструкции получится топология типа цилиндра (рис. 5.5,б). В то-пологии цилиндра каждый ряд (или столбец) матрицы представляет собой коль-цо. Если одновременно произвести свертывание плоской матрицы в обоих на-правлениях, то получим тороидальную топологию сети (рис. 5.5,в). Двумерный тор на базе решеткиm×m обладает следующими параметрами:

Объемный вид тороидальной топологии для массива размерности 4×8 показан на рис. 5.5, г.

Помимо свертывания к плоской решетке может быть применена операция скручивания(twisting). Суть этой операции состоит в том, что вместо колец все узлы объединяются в разомкнутую или замкнутую спираль, то есть узлы, рас-положенные с противоположных краев плоской решетки, соединяются с неко- торым сдвигом. Если горизонтальные петли объединены в виде спирали, обра-зуется сеть типаILLIAC. На рис. 5.5,дпоказана подобная конфигурация СМС, соответствующая хордальной сети четвертого порядка и характеризуемая сле-дующими метриками:D=m – 1;d = 4;I = 2N;B= 2m.

Трехмерная сеть реализована в архитектуре суперЭВМ Cray T3D и пред-ставляет собой трехмерный тор, образованный объединением процессоров в кольца по трем координатам: x,y иz.

Примерами ВС, где реализованы различные варианты решетчатых топо-логий, служат: ILLIAC IV,MPP,DAP,CM-2,Paragonи др.

Источник

Оцените статью
Adblock
detector