Esp8266 ac dc модуль реле wifi esp 12f

WiFi модуль ESP8266 esp-12f. Датчик открытия двери своими руками

Добрый день,
Интересует история и опыт создания WiFi датчика открытия двери или наступления иного события, которое нужно зарегистрировать?
Вам под кат! Будет интересно!

Мотивация

Изначально мне хотелось с минимальными затратами времени и денег сделать датчик открытия входной двери в квартиру. Мне было интересно знать, ходит ли владелец в жильё, которое мы снимали.

Структура статьи

В этой статье я опишу несколько версий датчика и примененных схемотехнически-программных методов с целью сделать устройство лучше. Статья будет полезна для тех, кто хочет реализовать свою идею при батарейном питании ESP8266, но опасается, что двух АА батареек не хватит для работы ESP в режиме сна с периодическим пробуждением.
Я отдаю себе отчет, что на данный момент лучшим вариантом был бы BLE/ZigBee, но они на тот момент требовали создания дополнительной инфраструктуры, чего я хотел избежать дома и что бывает невозможно в условиях офиса.

Первая версия датчика

Идея и реализация были подсмотрены на Pinterest.
В ESP я прошил интерпретатор Бейсика. ESP при сбросе подключается к WiFi и посещает прописанный URL и засыпает.
URL это WebHook сервиса ifttt.com. При каждом посещении заданного URL ifttt.com посылает e-mail с заданной темой и датой/временем наступления события. Ввиду того, что имейлы можно получать и на компьютере и на мобильном устройстве, а также сортировать в папки фильтрами — система доставки событий уже готова 🙂

Система с WebHook-ами будет использована во всех версиях датчиков.

Аппаратно это была крайне энергонеэффективная связка платы NodeMcu и роутера HAME MPR-A2 в режиме повербанка:

Одного заряда встроенной в роутер 18650 хватало на неделю работы устройства, впрочем этого времени хватало для «охраны» квартиры во время командировок.
К земле и линии Reset был припаян нормальноразомкнутый геркон, который выводил из сна плату при открытии двери. Такое решение требовало расположить магнит так, чтобы при закрытой двери геркон был разомкнут, и лишь при открытии двери он должен был ненадолго замкнуться, чтобы сбросить плату и инициировать работу программы.

Плюсы:
+Собрано за 30 минут на коленке из имеющихся деталей.

Минусы:
-Малое время работы из-за двойного преобразования напряжения.
-Бейсик отрабатывал программу 10+секунд.

Вторая версия датчика

Решено избавиться от Бейсика в пользу Ардуино, а также от двойного преобразования питания и сделать какой-то анализ бюджета питания вообще.
По питанию был выбор: литий+LDO или литий+импульсный преобразователь или просто 2хАА.
Выбрал просто 2хАА и мысленно готовился менять батарейки каждый месяц 🙂
Использовал вот такие щелочные батарейки:

 #include #include #include #include ESP8266WiFiMulti WiFiMulti; void setup() < WiFiMulti.addAP("myssid", "mypassword"); >void loop() < // wait for WiFi connection if((WiFiMulti.run() == WL_CONNECTED)) < HTTPClient http; http.begin("http://maker.ifttt.com/trigger/entrancedoor/with/key/censored"); //HTTP int httpCode = http.GET(); http.end(); ESP.deepSleep(999999999*999999999U, WAKE_NO_RFCAL); >> 

Достал из запасов пластиковую коробочку 60*36*25mm и оформил в неё датчик:

Читайте также:  Билайн нет сети вай фай

Внутри треш и угар, геркон всё так же на reset+gnd, снял светодиод с ESP, блокировочный конденсатор отвалился и всё на проводах.
Не забываем, это глубокая beta-версия, которая в таком как она есть виде всё-же смогла меня удивить:

Герконовый датчик прикручен, в косяк двери вставлен маленький магнит, коробочка приклеена липучей велкро S-12730 к стене.
Когда дверь открывается, то магнит кратковременно пролетает над герконом и сбрасывает ESP:

Анализ потребления питания

Так как в моей схеме питания нет никаких преобразований совсем, то всё что потребит во время работы и сна датчик — то я и потеряю, и мне захотелось оценить эти потери.
В активном режиме датчик работает 5 секунд и получается вот такая кривая потребления:

Я даже делал отдельный топик с самодельным приспособлением для замеров.
Всё остальное время датчик спит, и потребление во сне у разных версий модулей очень отличается.
Разброс от 16мкА до 250мкА во сне и всё из-за неотмытых плат, левых чипов флеш-памяти и дешевых модулей:


Попытка использовать ESP8285 дала 250мкА ток сна(WTF. ):

Модуль по ссылке из заглавия имел ток сна 16мкА:

А теперь самое интересное, цифры:
На одной паре батареек АА датчик работал с 18го июня 2018г 06:51AM до 4 октября 2019г 09:41PM что составило 473 дня!
За эти 473 дня датчик сработал 8912 раз(. ).
Так что мой пессимизм по поводу смены батарей каждый месяц был глубоко не оправдан.
Когда утром 5го октября 2019го я не получил от датчика e-mail, я вскрыл коробочку и нашел батареи в таком состоянии(пара новых с черной изолентой для сравнения):

Эта окисленная пара, которая вчера смогла в последний раз, имела напряжение 2,46В и внутреннее сопротивление по YR1030 0,49 Ом 🙂

Немного арифметики, которая показывает на что можно рассчитывать строящему устройство на ESP+2xAA:
1. 8912*5/60/60=12,36 часов в активном режиме работы.
2. 473*24-12,36=11339,64 часов во сне.
3. 11339,64*0,016=181мА*ч было потрачено во сне, и я это исправлю в следующей версии датчика.

Читайте также:  Wifi адаптер неопознанная сеть

Построил еще один датчик второй версии, установил на работе, и отловил редиску, которая лазила по моим шухлядкам 🙂

Плюсы:
+Существенно большее время автономной работы по сравнению с первой версией.
+Проще конструкция.

Минусы:
-Замкнутый надолго геркон не даст возможность коду сработать, как и в первой версии.
-Механический геркон, может стоит рассмотреть датчик Холла?
-Есть ненулевой (16мкА) ток сна, который можно и нужно оптимизировать.

Третья итерация

Не стал называть версией, так как третья итерация дала мне три разных датчика.
Купил пять разных датчиков Холла и проверил их потребление:

 1. DRV5032FBDBZR - 0,74мкА 2. RR121-1B13-311- 0,19мкА 3. DRV5032FADBZR - 1,64мкА 4. CT832BV-HS3 - 1,05мкА 5. Si7201-B-00-FV- 0,35мкА 

Решил продолжать с номером пять, как с самым стабильно работающим.

По наводке от uncle_sem купил герконищи:

Я нашел таймер TPL5110, который позволит не работать с линией reset и сократить потребление датчика во сне.
По даташиту таймер потребляет 35нА, а в реальности 10нА. Таймер позволяет либо периодически включать устройство с помощью внешнего мосфета, что было бы полезно для датчика температуры, либо работать в одиночном режиме по команде.

Я выбрал одиночный режим. К таймеру был куплен P-CH мосфет SSM3J338R,LF, вот они на макетницах:

Вот пример использования таймера из даташита:

Я поставил задающий резистор на 12кОм для получения 11-и секундной задержки во включенном состоянии. Кроме того у таймера есть возможность досрочного отключения ESP если получит высокий уровень на входе «Done» я подключил его к GPIO 4 так как на нем нет никакой активности при старте ESP.

 #include #include #include #include int cntr=0; ESP8266WiFiMulti WiFiMulti; void setup() < digitalWrite(4,LOW); pinMode(4,OUTPUT); WiFiMulti.addAP("myssid", "mypassword"); >void loop() < // wait for WiFi connection if((WiFiMulti.run() == WL_CONNECTED)) < HTTPClient http; http.begin("http://maker.ifttt.com/trigger/entrancedoor/with/key/censored"); //HTTP int httpCode = http.GET(); http.end(); digitalWrite(4,HIGH); delay(10); ESP.deepSleep(0); >delay(200);cntr++; if (cntr==150) < digitalWrite(4,HIGH); delay(10); ESP.deepSleep(0); >> 

Первая тестовая плата с неотмытым флюсом, но всё-же заработала:

Оказалось, между DRV TPL5110 и затвором мосфета нужно было поставить 5кОм резистор, чтобы всё работало как надо.

Я испытал на этой тестовой плате и геркон и датчик Холла и даже оптопару и создал 4 платы:
1. Нано плата только с таймером, размером 16х16мм, как раз помещается сзади ESP:

2. Плата для таймера с герконом для корпуса 60*36*25mm
3. Плата для таймера с оптопарой — датчик дверного звонка.
4. Плата для таймера с датчиком Холла на торце.

Вот они в фотовиде:

Вот они смонтированы:

Плюсы:
+10нА ток сна датчика с герконом или оптопарой.
+360нА ток сна у версии с датчиком Холла.
+Замкнутый надолго геркон/Холл/оптопара больше не будут препятствовать выполнению программы.
+Нано-версию можно встроить даже в шкатулку, настолько она маленькая.

Читайте также:  Driverpack solution lan драйверы сетевых wifi карт

Минусы:
-Нет возможности различать факт открытия или закрытия двери. На оба события будет сработка, если между ними более 5 секунд.
-Энергопотребление в активном режиме выше, чем у современных не-WiFi альтернатив.

Выводы

Источник

Обзор платы ESP12F Relay X4.

При планировании нового проекта пришло время выбрать электронику. Так как проект должен управлять нагрузкой, соответственно, понадобится модуль из 4 реле, микроконтроллер и источник питания. После небольших поисков выбор пал на плату ESP12F Relay X4 (LC-Relay-ESP12-4R-MV – по даташиту), которая включает в себя всё необходимое. Приятным бонусом является тот момент, что плата также на борту имеет источник питания AC/DC, а это позволяет подключиться к сети 220 В и больше ни о чём не думать.

 ESP12F Relay X4 (LC-Relay-ESP12-4R-MV – по даташиту)

Обзор ESP12F Relay X4.

На плату размещены четырёхпозиционное реле и модуль ESP-12F, а также выведены порты ввода/вывода. Имеется несколько вариантов подключения источников питания AC90-250V / DC7-30V / 5V.

ESP12F Relay X4

Запрограммировать устройство можно в среде разработки Arduino IDE, а благодаря микроконтроллеру ESP8266 устройство имеет Wi-Fi, это позволит использовать устройство в системах «умным домом» и в других случаях, где требуется управление по Wi-Fi.

Характеристики ESP12F Relay X4:

1. Используется Wi-Fi модуль ESP-12F, флэш-память объёмом 4 М байт;

2. Порты ввода-вывода и порт загрузки программы по UART разведены на плате для облегчения разработки;

3. Встроенный модуль питания с коммутацией переменного и постоянного тока, режим питания поддерживает AC90-250V/DC7-30V/5V;

4. Кнопка перезагрузки модуля;

5. ESP-12F поддерживает инструменты разработки, такие как Eclipse / Arduino IDE;

6. На плате имеется 4 реле 5 В, подходящие для управления нагрузками, рабочее напряжение которого находится в пределах 250 В переменного тока / 30 В постоянного тока;

7. Встроенный индикатор питания, 1 программируемый светодиод и индикаторы реле.

Габаритные размеры и вес:

Характеристики ESP12F Relay X4

Интерфейс.

Порт программирования:

GND, RX, TX, 5V ESP8266 подключены к GND, TX, RX, 5V внешнего модуля последовательного порта TTL.

Внимание! При загрузке прошивку необходимо IO0 соединить с GND, а затем отключить соединение между IO0 и GND после завершения загрузки прошивки.

Релейный выход:

  • NC: нормально замкнутый контакт реле – замкнут на контакт COM, при подаче управляющего сигнала размыкается;
  • COM: общий контакт;
  • NO: нормально разомкнутый контакт реле — контакт разомкнут, при подаче управляющего сигнала замыкается на COM.

Описание GPIO распаянных на плате.

Прежде чем приступать к рассмотрению распаянных GPIO на плате, давайте рассмотрим распиловку модуля ESP-12F.

Прежде чем приступать к рассмотрению распаянных GPIO на плате, давайте рассмотрим распиловку модуля ESP-12F.

И часть схемы модуля ESP12F Relay X4, по которой видно, как разведены GPIO ESP8266.

И часть схемы модуля ESP12F Relay X4, по которой видно, как разведены GPIO ESP8266.

Колодка подключения программатора.

Колодка подключения программатора.

Источник

Оцените статью
Adblock
detector