Архитектура компьютерной сети. Физическая и логическая топологии.
Физическая топология относится к физической структуре сети (геометрическое расположение узлов).
Логическая топология сети характеризует способ прохождения пакетов данных по сети, а также метод организации связи в сети, обеспечивающий одновременную работу «на передачу» только одной сетевой станции (узла), т.к. все узлы используют только одну и ту же линию связи.
Физическая топология.
1. Физическая шинная топология. В этой топологии кабель идет от компьютера к компьютеру, связывая их в цепочке. Все компьютеры в сети связаны одним общим кабелем, как правило, коаксиальным.
2. Звездообразная физическая топология. Сети, построенные на основе этой топологии, подключаются к концентратору, которая обеспечивает связь между ними. Каждая рабочая станция имеет отдельное соединение с концентратором. В этой топологии используется больше кабеля, кабеля, чем в шинной. Каждому элементу сети требуется проложить свой собственный кабель.
3. Распределенная физическая звездообразная топология называется звезда – шина. Здесь концентраторы сети последовательно подключены друг другу.
4. Кольцевая топология. Эта сеть, в которой все узлы объединяются в кольцо выполненные в виде пары кабеля проложенных между каждым узлом.
Логическая топология.
1. Логическая шинная топология (пример Ethernet). Сеть с этой топологией работает следующим образом: каждый раз, когда у какого-либо узла сети оказываются данные для другого узла, то первый узел производит «оповещение» всей сети. Все остальные узлы «слушают» сеть и проверяют, предназначены эти данные для них или нет. Если предназначены, то они «оставляют» их себе; если нет, то игнорируют.
2. Логическая кольцевая топология. Сеть, построенная по этой топологией должна функционировать следующим образом: каждая станция должна повторять то, что она «услышит» от предыдущей. Когда пакет данных возвращается их отправителю, передачи прекращаются. Основой этой топологии является специальный формат пакета данных, который называется маркером. Использование маркера позволяет устранить конфликты, в пакетах гарантируя то, что в данный момент времени только одна станция сможет посылать данные через сеть. Такой метод называется эстафетой. Суть метода состоит в том, что только один узел, который контролирует эстафету, может передавать информацию через сеть. Из-за важности маркера один из компьютеров сети специально выделяется для управления им. Этот компьютер называется задатчиком маркера. Он определяет потерю маркеров, отслеживает передачу кадров и создает новый маркер, если это необходимо.
§7. Физическая и логическая топология сети.
Физическая топология — это граф, вершинами которого являются узлы сети, а ребрами — физические связи между ними. Логическая топология описывает, как циркулируют потоки информации между узлами. Физическая и логическая топология сети могут не совпадать между собой. Фактически логическая топология определяет алгоритм, согласно которому сетевые узлы будут получать доступ к среде передачи данных (будет описано далее). Определяют следующие физические топологии:Шинная топологияВ этой топологии все узлы подключены непосредственно к сетевой среды. Сейчас такая топология используется достаточно редко из-за значительных недостатков — физический разрыв между любыми узлами приводит к неработоспособности всей сети. Реализовывалась на коаксиальном кабеле.Кольцевая топологияОбладает теми же недостатками, что и шинная, а поэтому на практике реализуется неявно. При явной реализации выход из строя любого узла или связи между ними приводит к неработоспособности сети.
Физические узлы соединены по топологии линейная шина однако доступ к шине происходит в кольцевом порядке от узла 1 к узлу 2, …., от узла 4 к узлу 1.
_______ физическая ——- логическая.
8. Коммуникационное оборудование
Коммутаторы — это программно – аппаратные устройства, которые делят общую среду передачи данных на логические сегменты. Логический сегмент образуется путем объединения нескольких физических сегментов с помощью концентраторов. Каждый логический сегмент подключается к отдельному порту коммутатора. Повторители – это аппаратные устройства, предназначенные для восстановления и усиления сигналов в вычислительных сетях с целью увеличения их длины. Мосты – это программно – аппаратные устройства, которые обеспечивают соединение нескольких локальных сетей между собой или несколько частей одной и той же сети, работающих с разными протоколами. Мосты предназначены для логической структуризации сети или для соединения в основном идентичных сетей, имеющих некоторые физические различия. Мост изолирует трафик одной части сети от трафика другой части, повышая общую производительность передачи данных. Логическая структуризация разделяет общую среду передачи данных на логические сегменты и тем самым устраняет столкновения (коллизии) данных в вычислительных сетях. Логические сегменты или подсети могут работать автономно и по мере необходимости компьютеры из разных сегментов могут обмениваться данными между собой. Протоколы управления в вычислительных сетях остаются теми же, какие применяются и в неразделяемых сетях.
9. Типы кабелей
Витая Пара наиболее распространенное средство для передачи данных между компьютерами. В данном типе кабеля используется медный попарно скрученный провод, что позволяет уменьшить количество помех и наводок, как при передаче сигнала по самому кабелю, так и при воздействии внешних помех. Существует несколько категорий этого кабеля. Перечислим основные из них. Cat 3 – был стандартизирован в 1991 г., электрические характеристики позволяли поддерживать частоты передачи до 16 МГц, использовался для передачи данных и голоса. Более высокая категория –Cat 5, была специально разработана для поддержки высокоскоростных протоколов. Поэтому его электрические характеристики лежат в пределах до 100Мгц. На таком типе кабеля работают протоколы передачи данных 10, 100, 1000 Мбит/с. На сегодняшний день кабель Cat5 практически вытеснил Cat 3. Основное преимущество витой пары перед телефонными и коаксиальными кабелями – более высокая скорость передачи данных. Также использование Cat 5 в большинстве случаев позволяет, не меняя кабельную структуру, повысить производительность сети (переходом от 10 к 100 и от 100 к 1000 Мбит/с).
Коаксиальный Кабель использовался в сетях еще несколько лет назад, но сегодня это большая редкость. Такой тип кабеля по строению практически идентичен обычному телевизионному коаксиальному кабелю – центральная медная жила отделена слоем изоляции от оплетки. Некоторые отличия есть в электрических характеристиках (в телевизионном кабеле используется кабель с волновым сопротивлением 75 Ом, в сетевом – 50 Ом).
Основными недостатками этого кабеля является низкая скорость передачи данных (до 10Мбит/с), подверженность воздействиям внешних помех. Кроме того, подключение компьютеров в таких сетях происходит параллельно, а значит, максимальная возможная скорость пропускания делится на всех пользователей. Но, по сравнению с телефонным кабелем, коаксиал позволяет объединять близко расположенные компьютеры с намного лучшим качеством связи и более высокой скоростью передачи данных.
Оптоволоконный кабель используется для соединения больших сегментов сети, которые располагаются далеко друг от друга, или в сетях, где требуется большая полоса пропускания, помехоустойчивость. Оптический кабель состоит из центрального проводника света (сердцевины) – стеклянного волокна, окруженного другим слоем стекла – оболочкой, обладающей меньшим показателем преломления, чем сердцевина. Распространяясь по сердцевине, лучи света не выходят за ее пределы, отражаясь от покрывающего слоя оболочки. Световой луч обычно формируется полупроводниковым или диодным лазером. В зависимости от распределения показателя преломления и от величины диаметра сердечника различают: одномодовое волокно; многомодовое волокно. Физический уровень также отвечает за преобразование сигналов между различными средами передачи данных. Например, при необходимости соединить сегменты сети, построенные наоптоволокне и витой паре, применяют так называемые конверторы (в данном случае они преобразуют световой импульс в электрический).