2.3.4. Топология сети на основе интерфейса rs-485
Топология сетей на основе интерфейса RS-485 определяется необходимостью устранения отражений в линии передачи. Поскольку отражения происходят от любой неоднородности, в том числе ответвлений от линии, то единственно правильной топологией сети будет такая, которая выглядит как единая линия без отводов, к которой не более чем в 32 точках подключены устройства с интерфейсом RS-485 (рис. 2.4, a). Любые варианты, в которых линия имеет длинные отводы или соединение нескольких кабелей в одной точке ( рис. 2.4, б), приводят к отражениям и снижению качества передачи.
Однако сказанное справедливо только для высоких скоростей передачи (более 9600 бит/с), когда эффекты отражения влияют на достоверность передачи. Для низких скоростей длина отвода (рис. 2.3) может быть произвольной.
Если существует необходимость разветвления линии, то это можно сделать с помощью повторителей интерфейса (рис. 2.5) или концентратора (хаба), см. раздел «Концентраторы (хабы)». Повторители позволяют разделить линию на сегменты, в каждом из которых выполняются условия согласования с помощью двух терминальных резисторов и не возникают эффекты, связанные с отражениями от концов линии, а длина отвода от линии до повторителя всегда может быть сделана достаточно малой (рис. 2.5).
Рис. 2.5. Применение повторителей интерфейса для разветвления линии передачи
2.3.5. Устранение состояния неопределенности линии
Когда передатчики всех устройств, подключенных к лини, находятся в третьем (высокоомном) состоянии, логическое состояние линии и входов всех приемников не определено. Чтобы устранить эту неопределенность, неинвертирующий вход приемника соединяют через резистор с шиной питания, а инвертирующий — с шиной «земли». Величины резисторов выбирают такими, чтобы напряжение между входами стало больше порога срабатывания приемника (+200 мВ).
Поскольку эти резисторы оказываются подключенными параллельно линии передачи, то для обеспечения согласования линии с интерфейсом необходимо, чтобы эквивалентное сопротивление на входе линии было равно 120 Ом.
Например, если резисторы, используемые для устранения неопределенности состояния линии, имеют сопротивление 450 Ом каждое, то резистор для согласования линии должен иметь номинал 130 Ом, тогда эквивалентное сопротивление цепи будет равно 114 120 Ом. Для того, чтобы найти дифференциальное напряжение линии в третьем состоянии всех передатчиков (см. рис. 2.6), нужно учесть, что к противоположному концу линии в стандартной конфигурации подключен еще один резистор сопротивлением 120 Ом и до 32 приемников с входным дифференциальным сопротивлением 12 кОм. Тогда при напряжении питания (рис. 2.6) дифференциальное напряжение линии будет равно +272 мВ, что удовлетворяет требованию стандарта.
Рис. 2.6. Резисторная цепь на выходе трансивера интерфейса, устраняющая неопределенное состояние линии и обеспечивающая ее согласование
2.3.6. Сквозные токи
В сети на основе интерфейса RS-485 может быть ситуация, когда включены два передатчика одновременно. Если при этом один из них находится в состоянии логической единицы, а второй — в состоянии логического нуля, то от источника питания на землю течет «сквозной» ток большой величины, ограниченный только низким сопротивлением двух открытых транзисторных ключей. Этот ток может вывести из строя транзисторы выходного каскада передатчика или вызвать срабатывание их схемы защиты.
Такая ситуация возможна не только при грубых ошибках в программном обеспечении, но и в случае, если неправильно установлена задержка между моментом выключения одного передатчика и включением другого. Ведомое устройство не должно передавать данные до тех пор, пока передающее не закончит передачу. Повторители интерфейса должны определять начало и конец передачи данных и в соответствии ними переводить передатчик в активное или третье состояние.
Топология сети на основе интерфейса rs-485
Топология сетей на основе интерфейса RS-485 определяется необходимостью устранения отражений в линии передачи. Поскольку отражения происходят от любой неоднородности, в том числе ответвлений от линии, то единственно правильной топологией сети будет такая, которая выглядит как единая линия без отводов, к которой не более чем в 32 точках подключены устройства с интерфейсом RS-485 (рис. 2.4, a). Любые варианты, в которых линия имеет длинные отводы или соединение нескольких кабелей в одной точке ( рис. 2.4, б), приводят к отражениям и снижению качества передачи.
Однако сказанное справедливо только для высоких скоростей передачи (более 9600 бит/с), когда эффекты отражения влияют на достоверность передачи. Для низких скоростей длина отвода (рис. 2.3) может быть произвольной.
Если существует необходимость разветвления линии, то это можно сделать с помощью повторителей интерфейса (рис. 2.5) или концентратора (хаба), см. раздел«Концентраторы (хабы)». Повторители позволяют разделить линию на сегменты, в каждом из которых выполняются условия согласования с помощью двух терминальных резисторов и не возникают эффекты, связанные с отражениями от концов линии, а длина отвода от линии до повторителя всегда может быть сделана достаточно малой (рис. 2.5).
Рис. 2.5. Применение повторителей интерфейса для разветвления линии передачи
Устранение состояния неопределенности линии
Когда передатчики всех устройств, подключенных к лини, находятся в третьем (высокоомном) состоянии, логическое состояние линии и входов всех приемников не определено. Чтобы устранить эту неопределенность, неинвертирующий вход приемника соединяют через резистор с шиной питания, а инвертирующий — с шиной «земли». Величины резисторов выбирают такими, чтобы напряжение между входами стало больше порога срабатывания приемника (+200 мВ).
Поскольку эти резисторы оказываются подключенными параллельно линии передачи, то для обеспечения согласования линии с интерфейсом необходимо, чтобы эквивалентное сопротивление на входе линии было равно 120 Ом.
Например, если резисторы, используемые для устранения неопределенности состояния линии, имеют сопротивление 450 Ом каждое, то резистор для согласования линии должен иметь номинал 130 Ом, тогда эквивалентное сопротивление цепи будет равно 114120 Ом. Для того, чтобы найти дифференциальное напряжение линии в третьем состоянии всех передатчиков (см. рис. 2.6), нужно учесть, что к противоположному концу линии в стандартной конфигурации подключен еще один резистор сопротивлением 120 Ом и до 32 приемников с входным дифференциальным сопротивлением 12 кОм. Тогда при напряжении питания (рис. 2.6) дифференциальное напряжение линии будет равно +272 мВ, что удовлетворяет требованию стандарта.
Рис. 2.6. Резисторная цепь на выходе трансивера интерфейса, устраняющая неопределенное состояние линии и обеспечивающая ее согласование
Сквозные токи
В сети на основе интерфейса RS-485 может быть ситуация, когда включены два передатчика одновременно. Если при этом один из них находится в состоянии логической единицы, а второй — в состоянии логического нуля, то от источника питания на землю течет «сквозной» ток большой величины, ограниченный только низким сопротивлением двух открытых транзисторных ключей. Этот ток может вывести из строя транзисторы выходного каскада передатчика или вызвать срабатывание их схемы защиты.
Такая ситуация возможна не только при грубых ошибках в программном обеспечении, но и в случае, если неправильно установлена задержка между моментом выключения одного передатчика и включением другого. Ведомое устройство не должно передавать данные до тех пор, пока передающее не закончит передачу. Повторители интерфейса должны определять начало и конец передачи данных и в соответствии ними переводить передатчик в активное или третье состояние.
§8. Топология сети rs-485
Сеть RS-485 строится по последовательной шиной(bus) схеме, т.е. приборы в сети соединяются последовательно симметричными кабелями. Концы линий связи при этом должны быть нагружены согласующими резисторами- «терминаторами»(terminator), величина которых должна быть равна волновому сопротивлению кабеля связи.
Терминаторы выполняют следующие функции:
- Уменьшают отражение сигнала от конца линии связи.
- Обеспечивают достаточный ток через всю линию связи, что необходимо для подавления синфазной помехи с помощью кабеля типа «витая пара».
Рис.5 Топология сети RS485
Если расстояние сегмента сети превышает 1200 м или количество драйверов в сегменте более 32 штук, нужно использовать повторитель (repeater), для создания следующего сегмента сети. При этом каждый сегмент сети должен быть подключен к терминаторам. Сегментом сети при этом считается кабель между крайним прибором и повторителем или между двумя повторителями.
Стандарт RS-485 не определяет, какой тип симметричного кабеля нужно использовать, но де-факто используют кабель типа «витая пара» с волновым сопротивлением 120 Ом.
Рис.6 Промышленный кабель Belden 3106A для сетей RS485
Рекомендовано использовать промышленный кабель Belden3106A для прокладки сетей RS485. Данный кабель имеет волновое сопротивление 120 Ом и двойной экран витой пары. Кабель Belden3106A содержит 4 провода. Оранжевый и белый провод представляют собой симметричную экранированную витую пару. Синий провод кабеля используется для соединения нулевого потенциала источников питания приборов в сети и называется «общий»(Common). Провод без изоляции используется для заземления оплетки кабеля и называется «дренажный» (Drain). В сегменте сети дренажный провод заземляется через сопротивление на шасси прибора, с одного из концов сегмента, чтобы не допустить протекания блуждающих токов через оплетку кабеля, при разном потенциале земли в удалённых точках.
Обычно сопротивления терминаторов и защитного заземления находится внутри прибора. Необходимо правильно подключить их с помощью перемычек или переключателей. В технической документации фирмы изготовителя приборов необходимо найти описание этих подключений.
Например, на рис.7 показаны рекомендации фирмы Allen Bradley по подключению кабеля Belden3106A к приборам 1747-AIC (Link Coupler) использующихся для соединения контроллеров SLC в сеть DH-485.
Рис.7 Схема подключения 1747-AIC (Allen Bradley)
На рис.7 показаны соединения кабеля с промежуточными приборами сегмента сети. Для первого прибора в сегменте сети DH-485 необходимо установить перемычку 5-6 (она подключает терминатор 120 Ом, который находится внутри прибора 1747-AIC) и перемычку 1-2 (подключает дренажный провод к шасси прибора через внутреннее сопротивление). Для последнего прибора в сегменте сети нужно установить только перемычку 5-6 (подключить терминатор)
При использовании других симметричных кабелей, в особенности, когда не известно их волновое сопротивление, величину терминаторов подбирают опытным путем. Для этого необходимо установить осциллограф в середину сегмента сети. Контролируя форму прямоугольных импульсов передаваемых одним из драйверов можно сделать вывод о необходимости корректировки величины сопротивления терминатора.
Рис.8 Несогласованная сеть RS-485 (без терминатора) и ее итоговая форма сигнала (слева) по сравнению с сигналом, полученным на правильно согласованной сети (справа)
Рис.9 Терминатор установлен в середине сегмента сети RS-485
Рис.10 Прибор подключен длинным отводом (3 м) к сегменту сети RS-485
Более подробно об этом можете прочитать в статье Maxim’s Application Note 373 январь 2001 года
Для анализа качества согласования линии связи применяют тестовые функции. Обычно такая функция встроена в конкретный прибор или программу. Во время тестирования передатчик посылает в сеть заданную последовательность символов, а приемник на другом конце линии анализирует правильность приема этой известной ему последовательности символов. Сеть тестируется определенное количество времени, после чего по количеству ошибок делается вывод о качестве связи