Кольцевая топология сети назначение

3.4.4. Топология «кольцо»

Эта топология (рис.22), широко используется для построения SDH сетей первых двух уровней SDH иерархии (155 и 622 Мбит/с).

Основное преимущество этой топологии — легкость организации защиты типа 1+1, благодаря наличию в синхронных мультиплексорах SMUX двух пар (основной и ре­зервной) оптических агрегатных выходов (каналов приема/передачи): восток — запад, дающих воз­можность формирования двойного кольца со встречными потоками. Кольцевая топология обладает рядом интересных свойств, позволяющих сети самовосстанав­ливаться, т.е. быть защищенной от некоторых достаточно характерных типов отказов

Пример 5. С учетом полученных в предыдущих примерах результатов: 1) выбрать оптимальную структуру сети SDH для проектируемой ГТС; 2) произвести выбор необходимого оборудования.

1) Принимая во внимание вышеприведенный анализ различных способов построения сети, делаем вывод о том, что для проектируемой сети целесообразно использовать структуру типа “кольцо”. Кольцевые сети могут обеспечить высокую надежность и экономичность. Двунаправленные кольца более выгодны при достаточно равномерном тяготении узлов коммутации вторичной сети. Поэтому двунаправленные кольца широко используются для построения первичной сети города.

Для построения первичной сети на базе SDH используем двунаправленное кольцо со 100% резервированием в случае аварии на участках кольца (рис.23).

2) В качестве каналов доступа узлов коммутации (РАТС, АМТС, УСС) к первичной сети, реализованной на базе SDH, будем использовать плезиохронные системы передачи ИКМ – 30 (стандарт Е1). Для расчета количества цифровых потоков типа Е1, необходимых для реализации пучков соединительных линий (каналов) между различными станциями сети, следует учитывать:

  1. число соединительных линий в направлении связи;
  2. тип используемых соединительных линий (односторонние или двухсторонние);
  3. тип используемой системы сигнализации,

При использовании односторонних линий и децентрализованной системы сигнализации, для расчета требуемого числа потоков Е1 от i-ой станции к j-ой станции, воспользуемся формулой:

где — требуемое число цифровых потоков Е1 от i-ой станции к j-ой станции;

— число соединительных линий (каналов) между i-ой и j-ой станциями;

При использовании двухсторонних пучков и централизованной системы сигнализации воспользуемся формулой:

Формула (2) справедлива, если  60 каналов. В противном случае необходимо использовать формулу (1), заменив на .

Аналогично производится расчет для всех односторонних линий, а также для ЗСЛ, СЛМ и СЛ к УСС.

Результаты расчета удобно представить в виде таблицы (табл.8)

Число ИКМ трактов передачи цифровых потоков Е1

Источник

Кольцевая топология.

с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.

Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географически рабочие станции расположены далеко от кольца (например, в линию).

Читайте также:  Вычислительные локальные телекоммуникационные сети

Сообщения циркулируют регулярно по кругу. Рабочая станция посы­лает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффектив­ной, так как большинство сообщений можно отправлять “в дорогу” по ка­бельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции. Продолжительность передачи информации увеличи­вается пропорционально количеству рабочих станций, входящих в вычисли­тельную сеть.

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информа­ции, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

Подключение новой рабочей станции требует кратко срочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограниче­ния на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями.

рис.3 Структура логической кольцевой цепи

Специальной формой кольцевой топологии является логическая кольцевая сеть. Физически она монтируется как соединение звездных топо­логий. Отдельные звезды включаются с помощью специальных коммутато­ров (англ. Hub -концентратор), которые по-русски также иногда называют “хаб”. В зависимости от числа рабочих станций и длины кабеля между рабо­чими станциями применяют активные или пассивные концентраторы. Актив­ные концентраторы дополнительно содержат усилитель для подключения от 4 до 16 рабочих станций. Пассивный концентратор является исключи­тельно разветвительным устройством (максимум на три рабочие станции). Управление отдельной рабочей станцией в логической кольцевой сети про­исходит так же, как и в обычной кольцевой сети. Каждой рабочей станции присваивается соответствующий ей адрес, по которому передается управ­ление (от старшего к младшему и от самого младшего к самому старшему). Разрыв соединения происходит только для нижерасположенного (ближайшего) узла вычислительной сети, так что лишь в редких случаях мо­жет нарушаться работа всей сети.

Шинная топология.

При шинной топологии среда передачи информации представляется в форме коммуникационного пути, доступного дня всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут не­посредственно вступать в контакт с любой рабочей станцией, имеющейся в сети.

Рабочие станции в любое время, без прерывания работы всей вычис­лительной сети, могут быть подключены к ней или отключены. Функциони­рование вычислительной сети не зависит от состояния отдельной рабочей станции.

В стандартной ситуации для шинной сети Ethernet часто используют тонкий кабель или Cheapernet-кaбeль с тройниковым соединителем. Выклю­чение и особенно подключение к такой сети требуют разрыва шины, что вы­зывает нарушение циркулирующего потока информации и зависание сис­темы.

Читайте также:  Схемы подключения компьютерной сети

Новые технологии предлагают пассивные штепсельные коробки, че­рез которые можно отключать и / или включать рабочие станции во время работы вычислительной сети.

Благодаря тому, что рабочие станции можно включать без прерыва­ния сетевых процессов и коммуникационной среды, очень легко прослуши­вать информацию, т.е. ответвлять информацию из коммуникационной среды.

В ЛВС с прямой (не модулируемой) передачей информации всегда может существовать только одна станция, передающая информацию. Для предот­вращения коллизий в большинстве случаев применяется временной метод разделения, согласно которому для каждой подключенной рабочей станции в определенные моменты времени предоставляется исключительное право на использование канала передачи данных. Поэтому требования к пропуск­ной способности вычислительной сети при повышенной нагрузке снижа­ются, например, при вводе новых рабочих станций. Рабочие станции при­соединяются к шине посредством устройств ТАР (англ. Terminal Access Point — точка подключения терминала). ТАР представляет собой специальный тип подсоединения к коаксиальному кабелю. Зонд игольчатой формы внедря­ется через наружную оболочку внешнего проводника и слой диэлектрика к внутреннему проводнику и присоединяется к нему.

В ЛВС с модулированной широкополосной передачей информации различные рабочие станции получают, по мере надобности, частоту, на ко­торой эти рабочие станции могут отправлять и получать информацию. Пе­ресылаемые данные модулируются на соответствующих несущих частотах, т.е. между средой передачи информации и рабочими станциями находятся соответственно модемы для модуляции и демодуляции. Техника широкопо­лосных сообщений позволяет одновременно транспортировать в коммуни­кационной среде довольно большой объем информации. Для дальнейшего развития дискретной транспортировки данных не играет роли, какая перво­начальная информация подана в модем (аналоговая или цифровая), так как она все равно в дальнейшем будет преобразована.

Характеристики топологий вычислительных сетей приведены в таб­лице.

Источник

1.4.3 Кольцевая топология

На рисунке 15 показан пример топологии ЛВС, в которой каждая рабочая станция соединена с двумя другими ра­бочими станциями. Такая топология на­зывается кольцом (ring).

Рисунок 15 – Кольцевая топология

Кольцевая топология применяется преимущест­венно в США для сетей, требующих выделения определенной части полосы пропускания для критичных по времени средств (например, для передачи видео и аудио), в высокопроизводительных сетях, а также при большом числе об­ращающихся к сети клиентов (что требует ее высокой пропускной способности). В сети с кольцевой топологией каж­дый компьютер соединяется со следующим компьютером, ретранслирующим ту информацию, которую он получает от первой машины. Благодаря такой ретрансляции сеть является активной, и в ней не возникают проблемы потери сигнала, как в сетях с шинной топологией. Кроме того, поскольку «конца» в кольцевой сети нет, никаких оконечных нагрузок не нужно.

Некоторые сети с кольцевой топологией используют метод доступа к среде на основе маркера (метод эстафетной передачи). Специальное короткое сообщение-маркер циркулирует по кольцу пока компьютер не пожелает пере­дать информацию другому узлу. Он модифицирует маркер, добавляет элек­тронный адрес и данные, а затем отправляет его по кольцу. Каждый из компью­теров последовательно получает данный маркер с добавленной информацией и передает его соседней машине, пока электронный адрес не совпадет с адресом компьютера-получателя, или маркер не вернется к отправителю. Получивший сообщение компьютер возвращает отправителю ответ, подтверждающий, что послание принято. Тогда отправитель создает еще один маркер и отправляет его в сеть, что позволяет другой станции перехватить маркер и начать передачу. Маркер циркулирует по кольцу, пока какая-либо из станций не будет готова к передаче и не захватит его.

Читайте также:  Вузы по специальности компьютерные сети

Все эти события происходят очень часто: маркер может пройти кольцо с диаметром в 200 м примерно 10000 раз в секунду. В некоторых еще более бы­стрых сетях циркулирует сразу несколько маркеров. В других сетевых средах применяются два кольца с циркуляцией маркеров в противоположных направ­лениях. Такая структура способствует восстановлению сети в случае возникно­вения отказов.

Преимущества сети с кольцевой топологией:

  • поскольку всем компьютерам предоставляется равный доступ к маркеру, никто из них не сможет монополизировать сеть;
  • справедливое совместное использование сети обеспечивает постепенное снижение ее производительности в случае увеличения числа пользователей и перегрузки (лучше, если сеть будет продолжать функционировать, хотя и медленно, чем сразу откажет при превышении пропускной способности).

Недостатки сети с кольцевой топологией:

  • отказ одного компьютера в сети может повлиять на работоспособность всей сети;
  • кольцевую сеть трудно диагностировать;
  • добавление или удаление компьютера вынуждает разрывать сеть.

1.4.4 Смешанные топологии

На основе трех базовых топологий можно создавать так называемые гибридные или смешанные топологии. К этим топологиям от­носятся:

Шинно-звездообразная топология комбинирует сети типа «звезда» и «шина», связывая несколько концентраторов шинными магист­ралями (рисунок 16).

Рисунок 16 – Шинно-звездообразная топология

Если один из компьютеров отказывает, концентратор может выявить отказавший узел и изолировать неис­правную машину. При отказе концентратора соединенные с ним компьютеры не смогут взаимодействовать с сетью, а шина разомкнется на два не связанных друг с другом сегмента.

В звездообразно-кольцевой топологии (которую называют также кольцом с соединением типа «звезда») сетевые кабели прокладываются аналогично звез­дообразной сети, но в центральном концентраторе реализуется кольцо (рисунок 17).

Рисунок 17 – Звездообразно-кольцевая топология

С внутренним концентра­тором можно соединить внешние, тем самым, расширив петлю внутреннего кольца.

Большие, объединенные ВС используют топологию самого общего вида — ячеи­стую. Узлами ячеистой топологии могут быть самые разнообразные сетевые устройства: повторители, мосты, концентраторы, маршрутизаторы, шлюзы.

Источник

Оцените статью
Adblock
detector