12. Компьютерные сети, виды. Организация сетевого взаимодействия. Сетевая семиуровневая модель.
Появление персональных компьютеров потребовало нового подхода к организации системы обработки данных, к созданию новых информационных технологий. Возникла потребность перехода от использования отдельных ЭВМ в системах централизованной обработки данных к распределенной обработке данных.
Распределенная обработка данных — это обработка данных, выполняемая на независимых, но связанных между собой компьютерах, представляющих распределенную систему.
Компьютерная (вычислительная) сеть — это совокупность компьютеров и терминалов, соединенных с помощью каналов связи в единую систему, удовлетворяющую требованиям распределенной обработки данных.
Абонентами сети (т. е. объектами, генерирующими или потребляющими информацию в сети) могут быть отдельные компьютеры, комплексы ЭВМ, терминалы, промышленные роботы, станки с числовым программным управлением и т. д.
В зависимости от территориального расположения абонентов компьютерные сети делятся на:
глобальные — вычислительная сеть объединяет абонентов, расположенных в различных странах, на различных континентах. Глобальные вычислительные сети позволяют решить проолему объединения информационных ресурсов человечества и организации доступа к этим ресурсам;
региональные — вычислительная сеть связывает абонентов, расположенных на значительном расстоянии друг от друга. Она может включать абонентов большого города, экономического региона, отдельной страны;
локальные — вычислительная сеть объединяет абонентов, расположенных в пределах небольшой территории. К классу локальных сетей относятся сети отдельных предприятий, фирм, офисов и т. д.
Объединение глобальных, региональных и локальных компьютерных сетей позволяет создавать многосетевые иерархии, обеспечивающие мощные средства обработки огромных информационных массивов и доступ к неограниченным информационным ресурсам.
В общем случае компьютерная сеть представляется совокупностью трех вложенных друг в друга подсистем: сети рабочих станций, сети серверов и базовой сети передачи данных.
Рабочая станция (клиентская-машина, рабочее место, абонентский пункт, терминал) — это компьютер, за которым непосредственно работает абонент компьютерной сети. Сеть рабочих станций представлена совокупностью рабочих станций и средств связи, обеспечивающих взаимодействие рабочих станций с сервером и между собой.
Сервер — это компьютер, выполняющий общие задачи компьютерной сети и предоставляющий услуги рабочим станциям. Сеть серверов — это совокупность серверов и средств связи, обеспечивающих подключение серверов к базовой сети передачи данных.
Базовая сеть передачи данных — это совокупность средств передачи данных между серверами. Она состоит из каналов связи и узлов связи. Узел связи — это совокупность средств коммутации и передачи данных в одном пункте. Узел, связи принимает данные, поступающие по каналам связи, и передает данные в каналы, ведущие к абонентам.
Базовыми требованиями, определяющими архитектуру компьютерных сетей, являются следующие:
открытость — возможность включения дополнительных компьютеров, терминалов, узлов и линий связи без изменения технических и программных средств существующих компонентов;
живучесть — сохранение работоспособности при изменении структуры;
адаптивность — допустимость изменения типов компьютеров, терминалов, линий связи, операционных систем;
эффективность — обеспечение требуемого качества обслуживания пользователей при минимальных затратах;
безопасность информации. Безопасность — это способность сети обеспечить защиту информации от несанкционированного доступа.
Указанные требования обеспечиваются модульной организацией управления процессами в сети, реализуемой по многоуровневой схеме. Чисдо уровней и распределение функций между ними существенно влияет на сложность программного обеспечения компьютеров, входящих в сеть, и на эффективность сети. Формальной процедуры выбора числа уровней не существует. Классической является семиуровневая схема. Эта архитектура пришита в качестве эталонной модели.
Уровень 1 — физический — реализует управление каналом связи, что сводится к подключению и отключению канала связи и формированию сигналов, представивших передаваемые данные.
Уровень 2 — канальный — обеспечивает надежную передачу данных через физический канал, организованный на уровне 1.
Уровень 3 — сетевой — обеспечивает выбор маршрута передачи сообщений по линиям, связывающим узлы сети.
Уровни 1-3 организуют базовую сеть передачи данных как систему, обеспечивающую надежную передачу данных между абонентами сети.
Уровень 4 — транспортный — обеспечивает сопряжение абонентов сети с базовой сетью передачи данных.
Уровень 5 — сеансовый — организует сеансы связи на период взаимодействия процессов. На этом уровне по рапросам процессов создаются порты для приема и передачи сообщений и организуются соединения — логические каналы.
Уровень 6 — представительный — осуществляет трансформацию различных языков, форматов данных и кодов для взаимодействия разнотипных компьютеров.
Уровень 7 — прикладной — обеспечивает поддержку прикладных процессов пользователей.
Порядок реализации связей в сети регулируется протоколами. Протокол — это набор коммутационных правил и процедур по формированию и передаче данных в сети.
Базовые принципы организации компьютерной сети определяют ее основные характеристики:
операционные возможности — перечень основных действий по обработке данных. Абоненты сети имеют возможность использовать память и процессоры многих компьютеров для хранения и обработки данных. Предоставляемая компьютерной сетью возможность параллельной обработки данных многими компьютерами и дублирования необходимых ресурсов позволяет сократить время решения задач, повысить надежность системы и достоверность результатов;
производительность — представляет собой суммарную производительность компьютеров, участвующих в решении задачи пользователя;
время доставки сообщений — определяется как статистическое среднее время от момента передачи сообщения в сеть до момента получения сообщения адресатом;
стоимость предоставляемых услуг.
33. Основы компьютерной коммуникации. Принципы построения и основные топологии вычислительных сетей, коммуникационное оборудование
Появление персональных компьютеров потребовало нового подхода к организации системы обработки данных, к созданию новых информационных технологий. Возникла потребность перехода от использования отдельных ЭВМ в системах централизованной обработки данных к распределенной обработке данных.
Распределенная обработка данных — это обработка данных, выполняемая на независимых, но связанных между собой компьютерах, представляющих распределенную систему.
Компьютерная (вычислительная) сеть — это совокупность компьютеров и терминалов, соединенных с помощью каналов связи в единую систему, удовлетворяющую требованиям распределенной обработки данных.
Абонентами сети (т. е. объектами, генерирующими или потребляющими информацию в сети) могут быть отдельные компьютеры, комплексы ЭВМ, терминалы, промышленные роботы, станки с числовым программным управлением и т. д.
В зависимости от территориального расположения абонентов компьютерные сети делятся на:
- глобальные — вычислительная сеть объединяет абонентов, расположенных в различных странах, на различных континентах. Глобальные вычислительные сети позволяют решить проолему объединения информационных ресурсов человечества и организации доступа к этим ресурсам;
- региональные — вычислительная сеть связывает абонентов, расположенных на значительном расстоянии друг от друга. Она может включать абонентов большого города, экономического региона, отдельной страны;
- локальные — вычислительная сеть объединяет абонентов, расположенных в пределах небольшой территории. К классу локальных сетей относятся сети отдельных предприятий, фирм, офисов и т. д.
- хранение данных;
- обработка данных;
- организация доступа пользователей к данным;
- передача данных и результатов их обработки пользователям.
- Шина. Канал связи, объединяющий узлы в сеть, образует ломаную линию — шину. Любой узел может принимать информацию в любое время, а передавать — только тогда, когда шина свободна. Данные (сигналы) передаются компьютером на шину. Каждый компьютер проверяет их, определяя, кому адресована информация, и принимает данные, если они посланы ему, либо игнорирует. Если компьютеры расположены близко друг друга, то организация КС с шинной топологией недорога и проста — необходимо просто проложить кабель от одного компьютера к другому. Затухание сигнала с увеличением расстояния ограничивает длину шины и, следовательно, число компьютеров, подключенных к ней. Проблемы шинной топологи возникают, когда происходит разрыв (нарушение контактов) в любой точке страны; сетевой адаптер одного из компьютеров выходит из строя и начинает передавать на шину сигналы с помехами; необходимо подключить новый компьютер.
- Кольцо. Узлы объединены в сеть замкнутой кривой. Передача данных осуществляется только в одном нийравлении. Каждый узел помимо всего прочего реализует функции ретранслятора. Он принимает и передает сообщения, а воспринимает только обращенные к нему. Используя кольцевую топологию, можно присоединить к сети большое количество узлов, решив проблемы помех и затухания сигнала средствами сетевой платы каждого узла. Недостатки кольцевой организации: разрыв в любом месте кольца прекращает работу всей сети; время пере-рачи сообщения определяется временем последовательного срабатывания каждого узла, находящегося между рггправителем и получателем сообщения; из-за прохождения данных через каждый узел существует возможность непреднамеренного искажения информации.
- Звезда. Узлы сети объединены с центром лучами. Вся информация передается через центр, что позволяет относительно просто выполнять поиск неисправностей и добавлять новые узлы без прерывания работы сети. Однако расходы на организацию каналов связи здесь обычно выше, чем у шины и кольца. Комбинация базовых топологий — гибридная топология — обеспечивает получение широкого спектра решений, аккумулирующих достоинства и недостатки базовых.