Многосвязная топология локальной сети

Каждый с каждым (Многосвязная)

В такой сети каждый компьютер дословно соединен с каждым по отдельности. Что конечно сказывается на затратах в отношении кабеля и дополнительного оборудования, но зато в случае отказа одного из компьютеров в такой сети, все остальные компьютеры не остаются без соединения и продолжают дальше нормально взаимодействовать, а скорость обмена информацией в такой сети достаточно высокая.

Такая сеть применяется крайне редко и лишь для обеспечения большей надежности и высокой скорости, что допустим для обеспечений домашней сети слишком дорого, так как требует больших затрат на дополнительное оборудование и в разы большее количество кабеля.

На мой взгляд, самая распространенная и верная топология. Такая сеть организована по принципу централизованного обращения, т.е. есть центральный компьютер или концентратор (хаб), к которому подключены все компьютеры сети.

В такой сети может быть очень много компьютеров, причем все они должны быть на удалении от хаба не более 100 метров (такова особенность принципа распространения сигналов). Для такой сети требуется не так много оборудование и обслуживание такой сети происходит гораздо проще, чем во всех предыдущих вариантах, единственный минус такой сети в том, что при выходе из строя хаба все компьютеры остаются без соединения.

Так же минусами можно назвать некоторые мелочи, такие как: большие затраты на кабель (но меньшие по сравнению с многосвязной сетью) и ограничение по количеству компьютеров в зависимости от количества выходов на концентраторе.

Зато при повреждении одной из линий без сети остается одна машина, что так же и при повреждении самой машины, т.е. вся сеть продолжает стабильно работать даже если какой-то элемент дает сбой.

Топология-наследница, которая берет свое начало из топологии «Звезда». Думаю здесь говорить особо много не буду, так как все практически то же что и у звезды, только более разветвленное, собственно потому и дерево. Такие сети применяются на крупных предприятиях. Причем к хабу могут подключаться как компьютеры, так и другие хабы, образуя новые ветки.

Комбинированные топологии

В настоящее время чаще всего используются топологии, которые комбинируют топологию сети по принципу шины, звезды и кольца.

Звезда-шина (star-bus) — это комбинация топологий «шина» и «звезда». Чаще всего это выглядит так: несколько сетей с топологией «звезда» объединяются при помощи магистральной линейной шины. В этом случае выход из строя одного компьютера не оказывает никакого влияния на сеть — остальные компьютеры по-прежнему взаимодействуют друг с другом. А выход из строя концентратора повлечет за собой остановку подключенных к нему компьютеров и концентраторов.

Читайте также:  Компьютерные телекоммуникационные сети информатика

Звезда-кольцо (star-ring) кажется несколько похожей на звезду-шину. И в той, и в другой топологии компьютеры подключены к концентратору, который фактически и формирует кольцо или шину. Отличие в том, что концентраторы в звезде-шине соединены магистральной линейной шиной, а в звезде-кольце на основе главного концентратора они образуют звезду.

Существует множество факторов, которые необходимо учитывать при выборе наиболее подходящей к данной ситуации топологии. Возможно нижеприведенная таблица поможет сделать правильный выбор.

Экономный расход кабеля. Сравнительно недорогая и несложная в использовании среда передачи. Простота, надежность. Легко расширяется.

При значительных объемах трафика уменьшается пропускная способноси сети. Трудно локализовать проблемы. Выход из строя кабеля останавливает работу многих пользователей.

Все компьютеры имеют равный доступ. Количество пользователей не оказывает сколько-нибудь значительного влияния нa производительность.

Выход из строя одного компьютерам может вывести из строя всю сеть. Трудно локализовать проблемы. Изменение конфигурации сети требует остановки работы всей сети

Легко модифицировать сеть, добавляя новые компьютеры. Централизованный контроль и управление. Выход из строя одного компьютера не влияет на работоспособность сети.

Выход из строя центрального узла выводит из строя всю сеть.

Основной бич домашних сетей — это трудности прокладки кабелей. Спроектировать и построить инфраструктуру крупного предприятия или межстанционные соединения АТС можно не считаясь с затратами, подстраивая «под проект» местные условия. В случае необходимости — выкопать новый туннель, возвести эстакаду, проложить подводный кабель, и т.п.

Ситуация недорогих сетей принципиально иная, и в этом их коренное отличие. Домашним сетям неизбежно приходится подстраиваться под застройку города. В некоторых местах прокладка невозможна, где-то нежелательна, или имеет высокую стоимость. Масса на первый взгляд незначительных помех часто превращает подобные работы в «шаманство», требуя от проектировщика глубоких знаний местных условий.

Основным вариантом, который сложно уложить в описанные в предыдущей главе схемы, является линейный.

Рис. 6.6. Линейная магистраль.

В таком виде сеть представляет собой уже рассмотренную выше «гирлянду», в ее самом примитивном и ненадежном виде. Отказ любого промежуточного узла вызывает прекращение услуги абонентам, подключенным далее по линии.

Вдобавок, приходится констатировать, что это один из самых распространенных на сегодня типов небольших сетей. Такой форме способствуют особенности линейной городской застройке, экономия магистрального кабеля, стремление с минимальными затратами «дотянуться» до «перспективного» дома (или хорошего друга), и т.п.

Что же можно сделать для увеличения надежности линейной структуры?

Наиболее очевидным вариантом будет превращение «гирлянды» в «звезду». Пусть кабеля лежат рядом, или даже в одной оболочке, такой подход позволит избежать зависимости всей сети от локального сбоя электропитания или неисправностей активного оборудования. Иначе говоря, все узлы могут работать с центральным независимо друг от друга.

Читайте также:  Помощь по компьютерным сетям

Рис. 6.7. Звезда, растянутая в линию.

Можно заметить, что в этом нет ничего нового, именно так обычно строится внутридомовая проводка телефонии или СКС. Подобно этому, для магистрали использование одного физического кабеля может с успехом применяться, особенно в сетях среднего и небольшого размера.

Но, как правило, это технически осуществимо (и рентабельно) только в случае использования оптоволокна. Большое количество волокон в одном кабеле стоит не слишком дорого (хоть и вполне ощутимо). В то же время, для медных многопарных кабелей при таком подходе нет места — 100-200 метров, вот предел их работы. А это очень мало для междомовых магистралей.

Очевидно, что для любой среды передачи кабель будет самым уязвимым звеном. Его повреждение вызовет отказ всех расположенных далее узлов без исключения. Это основной и неустранимый недостаток «линейной звезды».

В случае применения отдельного кабеля главным недостатком становится его большой расход. Кроме этого, использовать специальные решения типа П-296 сложно — пучок толстых кабелей (около 14 мм диаметром каждый) будет хорошо виден, и может легко привлечь нежелательное внимание. К тому же выглядит это весьма некрасиво даже на большой высоте.

Вдобавок, кабеля хоть и разделены, но идут по одной трассе. Поэтому вероятность их одномоментного отказа остается вполне вероятной.

Описанных выше проблем можно избежать, если применить «линейное кольцо». Действительно, совсем не обязательно замыкать магистраль при помощи своих кабелей. Это вполне можно сделать и «через интернет» (либо какую-либо иную сеть передачи данных).

Рис. 6.8. Кольцо «через Интернет» в «линейной» сети.

При этом понадобится несколько более тонкая настройка программной части сети. В пользовательском компьютере может быть установлен только один «шлюз по умолчанию» (маршрутизатор, которому отправляются дейтаграммы IP, адресованные во внешние сети).

Соответственно, в случае повреждения линии в какой-либо точке желательна (но в общем случае не обязательна) автоматическая «подмена» основного канала резервным. Это сравнительно просто сделать используя фиктивные адреса пользователей, и несколько более сложно для реальных. Но в целом не представляет собой неразрешимой задачи.

Как и в «классическом» кольце, общий отказ возможен только при одновременной неисправности двух активных устройств или повреждения кабелей в двух точках. Понятно, что вероятность такого события невелика, и можно получить вполне надежную сеть при «линейной» топологии ценой оплаты «запасного» канала подключения к Интернет.

Нужно отметить, что резервные коммуникации могут быть значительно менее скоростными, чем основные. А значит, сравнительно не дорогими, вполне по карману Ethernet-провайдеру средней величины.

Читайте также:  Анализ сетевой модели по времени

Еще одним вариантом «линейного кольца» можно считать «гирлянду», в которой предусмотрена «обратная петля». Т.е. одна пара волокон в кабеле проходит через все активные устройства по очереди, а вторая идет цельной, и соединяет первый и последний узел сети.

Рис. 6.9 Кольцо «с обратной петлей».

Этот вариант позволяет надежно и недорого защититься от отказов активного оборудования, но уязвим от повреждения кабеля. Тем не менее, это, пожалуй, лучший способ для небольшой сети линейной топологии, в которой построение обычного кольца слишком сложно или дорого.

Но что делать, если финансовое положение начинающей сети не позволяет использовать оптоволокно в «линейной звезде», «обратной петле», или схемы, которые используют резервирование «через Интернет»? В этом крайнем случае ситуацию может облегчить (но не исправить полностью) следующая топология:

Рис. 6.10. Вариант сети в условиях максимальной экономии.

Т.е. ни в коем случае не следует стремиться построить длинную «гирлянду» из последовательных активных устройств. Значительно более целесообразно выделить магистраль, использующую минимальное количество оборудования. Пусть иногда понадобится «возвращаться» — расход кабеля при этом не так и велик…

Зато общая надежность значительно возрастет. Например, для недорогого П-296 (П-270) вполне достижимо 400-500 метров без повторителей. Значит, на сеть радиусом в 1,5 км (а это достаточно много) понадобится всего 4-5 устройств. В то время, как при построении «гирлянды» количество повторителей составит 15-20 штук.

При этом, по всей вероятности, придется отказаться от 100baseT в пользу 10baseT. Пусть медленнее, но надежнее. Не нужно хорошо разбираться в теории вероятностей, что бы сделать вывод о времени простоя сети при разных топологиях построения. Очевидно, что «гирлянда» будет больше ремонтироваться, чем работать.

В заключение, для иллюстрации общих принципов, хотелось бы привести схему вполне реальной (не придуманной) сети. Увы, карту расположение домов пришлось убрать из соображений безопасности прокладок.

Рис. 6.11. Пример реальной домашней сети.

Можно видеть два связанных кольца, в которых часть узлов является центром небольших «звезд». Таким образом, полностью вывести сеть из строя достаточно сложно. Обрыв любого кабеля на кольце не остановит работу. А оконечные разветвления позволяют охватить значительную территорию (практически весь жилой район).

По сути, это компромисс «звезды» и «кольца», адаптированный под имеющиеся дома, с учетом минимальных затрат кабеля и оборудования. И все это с сохранением достаточной потенциальной надежности.

В заключение можно порекомендовать творчески относиться к проектированию сети, порой самые эффективные решения не очевидны на первый взгляд. А небольшое усложнение/удорожание может привести к существенному росту надежности всей системы в целом.

Источник

Оцените статью
Adblock
detector