Модель сетевого планирования относится к моделям

Модели сетевого планирования и управления

Лекция 11 МОДЕЛИ СЕТЕВОГО ПЛАНИРОВАНИЯ И УПРАВЛЕНИЯ Назначение и области применения сетевого планирования и управления Поиски более эффективных способов планирования сложных процессов привели к созданию принципиально новых методов сетевого планирования и управления (СПУ). Система методов СПУ — система методов планирования и управления разработкой крупных народнохозяйственных ком­плексов, научными исследованиями, конструкторской и техноло­гической подготовкой производства, новых видов изделий, строи­тельством и реконструкцией, капитальным ремонтом основных фондов путем применения сетевых графиков. Первые системы, использующие сетевые графики, были при­менены в США в конце 50-х годов и получили названия СРМ (английская аббревиатура, означающая метод критического пути) и PERT (метод оценки и обзора программы). Система СРМ была впервые применена при управлении строительными работами, система PERT при разработке систем «Поларис». В России работы по сетевому планированию начались в 60-х годах. Тогда методы СПУ нашли применение в строительстве и научных разработках. В дальнейшем сетевые методы стали широ­ко применяться и в других областях народного хозяйства. СПУ основано на моделировании процесса с помощью сетево­го графика и представляет собой совокупность расчетных мето­дов, организационных и контрольных мероприятий по планиро­ванию и управлению комплексом работ. Модели сетевого планирования и управления

Рекомендуемые материалы

Система СПУ позволяет: • формировать календарный план реализации некоторого ком­плекса работ; • выявлять и мобилизовывать резервы времени, трудовые, ма­териальные и денежные ресурсы; • осуществлять управление комплексом работ по принципу «ведущего звена» с прогнозированием и предупреждением воз­можных срывов в ходе работ; • повышать эффективность управления в целом при четком распределении ответственности между руководителями разных уровней и исполнителями работ. Диапазон применения СПУ весьма широк: от задач, касающихся деятельности отдельных лиц, до проектов, в которых участвуют сотни организаций и десятки тысяч людей (например, разработка и созда­ние крупного территориально-промышленного комплекса). Под комплексом работ (комплексом операций, или проектом) мы будем понимать всякую задачу, для выполнения которой необхо­димо осуществить достаточно большое количество разнообразных работ. Это может быть и строительство некоторого здания, кораб­ля, самолета или любого другого сложного объекта, и разработка проекта этого сооружения, и даже процесс построения планов реализации проекта. Для того чтобы составить план работ по осуществлению боль­ших и сложных проектов, состоящих из тысяч отдельных иссле­дований и операций, необходимо описать его с помощью некото­рой математической модели. Таким средством описания проектов (комплексов) является сетевая модель. Сетевая модель и ее основные элементы Сетевая модель представляет собой план выполнения некото­рого комплекса взаимосвязанных работ (операций), заданного в специфической форме сети, графическое изображение которой называется сетевым графиком. Отличительной особенностью сете­вой модели является четкое определение всех временных взаимо­связей предстоящих работ. Главными элементами сетевой модели являются события и ра­боты. Термин работа используется в СПУ в широком смысле. Во-первых, это действительная работа — протяженный во времени процесс, требующий затрат ресурсов (например, сборка изделия, испытание прибора и т.п.). Каждая действительная работа должна быть конкретной, четко описанной и иметь ответственного ис­полнителя. Во-вторых, это ожидание — протяженный во времени процесс, не требующий затрат труда (например, процесс сушки после по­краски, старения металла, твердения бетона и т.п.). В-третьих, это зависимость, или фиктивная работа — логиче­ская связь между двумя или несколькими работами (событиями), не требующими затрат труда, материальных ресурсов или време­ни. Она указывает, что возможность одной работы непосредст­венно зависит от результатов другой. Естественно, что продолжи­тельность фиктивной работы принимается равной нулю. Событие — это момент завершения какого-либо процесса, от­ражающий отдельный этап выполнения проекта. Событие может являться частным результатом отдельной работы или суммарным результатом нескольких работ. Событие может свершиться только тогда, когда закончатся все работы, ему предшествующие. После­дующие работы могут начаться только тогда, когда событие свер­шится. Отсюда двойственный характер события: для всех не­посредственно предшествующих ему работ оно является конеч­ным, а для всех непосредственно следующих за ним — на­чальным. При этом предполагается, что событие не имеет про­должительности и свершается как бы мгновенно. Поэтому каждое событие, включаемое в сетевую модель, должно быть полно, точ­но и всесторонне определено, его формулировка должна включать в себя результат всех непосредственно предшествующих ему ра­бот. Среди событий сетевой модели выделяют исходное и завершаю­щее события. Исходное событие не имеет предшествующих работ и событий, относящихся к представленному в модели комплексу работ. Завершающее событие не имеет последующих работ и со­бытий. События на сетевом графике (или, как еще говорят, на графе) изображаются кружками (вершинами графа), а работы — стрел­ками (ориентированными дугами), показывающими связь между работами. Пример фрагмента сетевого графика представлен на рис.1. Рис. 2. На рис. 2. а приведен сетевой график задачи моделирования и построения оптимального плана некоторого экономического объекта. Чтобы решить эту задачу, необходимо провести следую­щие работы: Л — сформулировать проблему исследования; Б — построить математическую модель изучаемого объекта; В — со­брать информацию; Г — выбрать метод решения задачи; Д — построить и отладить программу для ЭВМ; Е — рассчитать оптимальный план; Ж — передать результаты расчета заказчику. Циф­рами на графике обозначены номера событий, к которым приво­дит выполнение соответствующих работ. Из графика, например, следует, что работы В и Г можно начать выполнять независимо одна от другой только после свершения события 3, т.е. когда выполнены работы А и Б; работу Д — после свершения события 4, когда выполнены работы А, Б и Г, а работу Е можно выполнить только после наступления события 5, т.е при выполнении всех предшествующих ему работ А, Б, В, Г» Д. В сетевой модели, представленной на рис. 2 а нет числовых оценок. Такая сеть называется структурной. Однако на практике чаще всего используются сети, в которых заданы оценки продол­жительности работ (указываемые в часах, неделях, декадах, меся­цах и т.д. над соответствующими стрелками), а также оценки других параметров, например трудоемкости, стоимости и т.п. Именно такие сети мы будем рассматривать в дальнейшем. Прежде сделаем следующее замечание. В рассмотренных примерах сетевые графики состояли из работ и событий. Однако может быть и иной принцип построения сетей — без событий. В такой сети вершины графа (например, изображенные прямо­угольниками) означают определенные работы, а стрелки — зави­симости между этими работами, определяющие порядок их вы­полнения. В качестве примера сетевой график «события — рабо­ты» задачи моделирования и построения оптимального плана некоторого экономического объекта, приведенный на рис. 2 а, представлен в виде сети «работы — связи» на рис. 2 б. А сете­вой график «события — работы» той же задачи, но с неудачно составленным перечнем работ, представлен на рис. 2 в . Следует отметить, что сетевой график «работы — связи» в от­личие от графика «события — работы» обладает известными пре­имуществами: не содержит фиктивных работ, имеет более про­стую технику построения и перестройки, включает только хорошо знакомое исполнителям понятие работы без менее привычного понятия события. Вместе с тем сети без событий оказываются значительно более громоздкими, так как событий обычно значи­тельно меньше, чем работ (показатель сложности сети, равный отношению числа работ к числу событий, как правило, сущест­венно больше единицы). Поэтому эти сети менее эффективны с точки зрения управления комплексом. Этим и объясняется тот факт, что (при отсутствии в целом принципиальных различий между двумя формами представления сети) в настоящее время наибольшее распространение получили сетевые графики «события — работы». Порядок и правила построения сетевых графиков Сетевые графики составляются на начальном этапе планирова­ния. Вначале планируемый процесс разбивается на отдельные работы, составляется перечень работ и событий, продумываются их логические связи и последовательность выполнения, работы закрепляются за ответственными исполнителями. С их помощью оценивается длительность каждой работы. Затем составляется (сшивается) сетевой график. После упорядочения сетевого графи­ка рассчитываются параметры событий и работ, определяются резервы времени и критический путь. Наконец, проводятся ана­лиз и оптимизация сетевого графика, который при необходимости вычерчивается заново с пересчетом параметров событий и работ. При построении сетевого графика необходимо соблюдать ряд правил. 1. В сетевой модели не должно быть «тупиковых» событий, т.е. событий, из которых не выходит ни одна работа, за исключением завершающего события (рис. 3 а). Здесь либо работа (2, 3) не нужна и ее необходимо аннулировать, либо не замечена необхо­димость определенной работы, следующей за событием 3 для свершения какого-либо последующего события. В таких случаях необходимо тщательное изучение взаимосвязей событий и работ для исправления возникшего недоразумения. 2. В сетевом графике не должно быть ‘Хвостовых» событий (кроме исходного>, которым не предшествует хотя бы одна работа (событие 3 — на рис. 3 б). Здесь работы, предшествующие со­бытию 3, не предусмотрены. Поэтому событие 3 не может свер­шиться, а следовательно, не может быть выполнена и следующая за ним работа (3, 5). Обнаружив в сети такие события, необходи­мо определить исполнителей предшествующих им работ и вклю­чить эти работы в сеть. 3. В сети не должно быть замкнутых контуров и петель, т.е. путей, соединяющих некоторые события с ними же самими (рис. 3 в, г). Рис. 3. Представим себе, что в сетевом графике, изображенном на рис 2 а, работы Б и Д при формулировании первоначального списка работ мы объединили бы в одну работу Б1. Тогда получили бы сетевой график, представленный на рис 2в. Событие означает, что к работе Б’, которую нельзя выполнить до выбора метода расчета (работа Г), а выбор метода расчета нельзя начинать до окончания построения модели (событие 3′). Другими словами, в сети образо­вался простейший контур: 2′->3′->2′. При возникновении контура ( а в сложных сетях, т.е. в сетях с высоким показателем сложности, это встречается довольно часто и обнаруживается лишь при помощи ЭВМ) необходимо вернуться к исходным данным и путем пересмотра состава работ добиться его устранения. Так, в нашем примере потребовалось бы разделе­ние работы Б’ на Б и Д. 4. Любые два события должны быть непосредственно связаны не более чем одной работой-стрелкой. «27 Креационизм» — тут тоже много полезного для Вас. Нарушение этого условия происходит при изображении парал­лельно выполняемых работ (рис. 3 д). Если эти работы так и оставить, то произойдет путаница из-за того, что две различные работы будут иметь одно и то же обозначение (7, 2); обычно при­нято под (i, у) понимать работу, связывающую j-м событием. Однако содержание этих работ, состав привлекаемых исполнителей и количество затрачиваемых на работы ресурсов могут существенно отличаться. В этом случае рекомендуется ввести фиктивное событие (событие 2′ на рис. 3 ё) и фиктивную работу (работа 2′, 2), при этом одна из параллельных работ (7, 2) замыкается на это фик­тивное событие. Фиктивные работы изображаются на графике пунктирными линиями. 5. В сети рекомендуется иметь одно исходное и одно завершаю­щее событие. Если в составленной сети это не так (см рис. 3 ж), то добиться желаемого можно путем введения фик­тивных событий и работ, как это показано на рис. 3 з. Фиктивные работы и события необходимо вводить и в ряд* других случаев. Один из них — отражение зависимости событий не связанных с реальными работами. Например, работы А и 1 (рис. 3 и) могут выполняться независимо друг от друга, но п< условиям производства работа Б не может начаться раньше, чем окончится работа А. Это обстоятельство требует введения фик- тивной работы С. Другой случай — неполная зависимость работ. Например, работа С требует для своего начала завершения работ А и Б, но работа Д связана только с работой Б, а от работы А не зависит. То гда требуется введение фиктивной работы Ф и фиктивного события 3′, как показано на рис. 3 к. Кроме того, фиктивные работы могут вводиться для отражения реальных отсрочек и ожидания. В отличие от предыдущих случаев здесь фиктивная работа характеризуется протяженностью во времени.

Читайте также:  Компьютерные сети все о них технологии

Рекомендуемые лекции

Источник

Оцените статью
Adblock
detector