Модели и методы анализа компьютерных социальных сетей

Методы анализа компьютерных социальных сетей

dc.contributor.author Батура, Татьяна Викторовна ru_RU
dc.contributor.author T. V. Batura en_EN
dc.creator Институт систем информатики им. А. П. Ершова СО РАН ru_RU
dc.creator A.P.Ershov Institute of Informatics Systems SB RAS en_EN
dc.date.accessioned 2013-02-27T15:15:40Z
dc.date.available 2013-02-27T15:15:40Z
dc.date.issued 2013-02-27
dc.identifier.issn 1818-7900
dc.identifier.uri https://lib.nsu.ru/xmlui/handle/nsu/250
dc.description.abstract Представлен обзор работ, посвященных проблеме анализа компьютерных социальных сетей. Существует четыре основных направления исследований в данной области: структурное, ресурсное, нормативное и динамическое. Для решения различных задач при анализе социальных сетей используются графовые и стохастические модели, модели эволюции сетей, методы с привлечением онтологий, структурные и реляционные модели, методы машинного обучения, методы визуализации графов и т. д. Приведено краткое описание наиболее популярных в настоящее время компьютерных социальных сетей и перечислены отдельные интересные программные приложения для их анализа. Намечены некоторые возможные пути дальнейших исследований, а именно: необходимость создания интегральной теории социальных сетей, более существенная адаптация методов обработки текстовой информации к сетевому контенту и др. ru_RU
dc.description.abstract This work is dedicated to social network analysis. There are four main research areas: structural, resource, regulatory, and dynamic. For the solving of the problems in social network analysis following methods are used: graph and stochastic models, models of network evolution, methods involving ontologies, structural and relational models, machine learning methods, network visualization techniques, etc. The article also describes the most popular computer social networks and some software applications to analyze them. It is identified some possible paths of research: the creation of an integrated theory of social networks, adaptation of methods of natural language text processing to the online content, etc. en_EN
dc.language.iso ru ru_RU
dc.publisher Новосибирский государственный университет ru_RU
dc.subject анализ социальных сетей ru_RU
dc.subject модель сети ru_RU
dc.subject граф сети ru_RU
dc.subject интеллектуальный анализ данных ru_RU
dc.subject центральность ru_RU
dc.subject cenrality en_EN
dc.subject data mining en_EN
dc.subject graph of network en_EN
dc.subject network model en_EN
dc.subject social networks analysis en_EN
dc.title Методы анализа компьютерных социальных сетей ru_RU
dc.title.alternative Methods of social networks analysis en
dc.type Article ru_RU
dc.description.reference 1. Чураков А. Н. Анализ социальных сетей // СоцИс. 2001. № 1. С. 109–121. 2. Charu C. Aggarwal. Social Network Data Analytics. 2011. 520 p. 3. Milgram S. The Small World Problem // Psychology Today. 1967. Vol. 2. Р. 60–67. 4. Granovetter M. S. The Strength of Weak Ties // American Journal of Sociology. 1973. Vol. 78. No. 6. P. 1360–1380. 5. Kleinberg J. M. Authoritative Sources in a Hyperlinked Environment // J. ACM. 1999. Vol. 46. No. 5. P. 604–632. 6. Johnson J., Ironsmith M. Assessing Children’s Sociometric Status: Issues and the Application of Social Network Analysis // Journal of Group Psychotherapy, Psychodrama & Sociometry. 1994. Vol. 47. Is. 1. P. 36–49. 7. Gyöngyi Z., Garcia-Molina H., Pedersen J. Combating Web Spam with TrustRank // Proceedings of the International Conference on Very Large Data Bases. 2004. Vol. 30. P. 576. 8. Davern M. Social Networks and Economic Sociology: A Proposed Research Agenda for a More Complete Social Science // American Journal of Economics & Sociology. 1997. Vol. 56. Is. 3. P. 287–302. 9. Koren Y. On Spectral Graph Drawing // Proceedings of the 9th International Computing and Combinatorics Conference. Springer, 2003. P. 496–508. 10. Fortunato S. Community Detection in Graphs // Phys. Rep. 2010. Vol.486. No. 3–5. P. 75–174. 11. Wasserman S., Faust K. Social Network Analysis: Methods And Applications. N. Y.: Cambridge University Press, 1994. 825 p. 12. Jensen D., Neville J. Data Mining in Social Networks // Proceedings of the National Academy of Sciences Symposium on Dynamic Social Network Analysis. 2002. P. 289–302. 13. Bonchi F., Castillo C., Gionis A., Jaimes A. Social Network Analysis and Mining for Business Applications // ACM TIST. 2011. Vol. 2 (3). P. 22–58. 14. Hanneman R. Computer-Assisted Theory Building: Modeling Dynamic Social Systems. Riverside, CA: University of California, Riverside, 1988. 15. Leskovec J., Kleinberg J., Faloutsos C. Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations // Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (KDD). N. Y., 2005. P. 177–187. 16. Leskovec J., Backstrom L., Kumar R., Tomkins A. Microscopic Evolution of Social Networks // Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. N. Y., 2008. P. 462–470. 17. Tantipathananandh C., Berger-Wolf T., Kempe D. A Framework for Community Identification in Dynamic Social Networks // Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. N. Y.: ACM Press, 2007. P. 717–726. 18. Sun J., Faloutsos C., Papadimitriou S., Yu P. Graphscope: Parameter-Free Mining of Large Time-Evolving Graphs // Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. N. Y., 2007. P. 687–696. 19. Ferlez J., Faloutsos C., Leskovec J., Mladenic D., Grobelnik M. Monitoring Network Evolution Using MDL // Proceedings of the International Conference on Data Engineering. 2008. P. 1328–1330. 20. Berlingerio M., Bonchi F., Bringmann B., Gionis A. Mining Graph Evolution Rules // Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science. Springer, 2009. Vol. 5781. P. 115–130. 21. Desikan P., Srivastava J. Mining Temporally Changing Web Usage Graphs // Proceedings of the International Workshop on Mining Web Data for Discovering Usage Patterns and Profiles. 2004. P. 1–17. 22. Inokuchi A., Washio T. A Fast Method to Mine Frequent Subsequences from Graph Sequence Data // Proceedings of the IEEE International Conference on Data Mining. 2008. P. 303–312. 23. Liu Z., Yu J., Ke Y., Lin X., Chen L. Spotting Significant Changing Subgraphs in Evolving Graphs // Proceedings of the 8th International Conference on Data Mining. 2008. P. 917–922. 24. Borgwardt K. M., Kriegel H.-P., Wackersreuther P. Pattern Mining in Frequent Dynamic Subgraphs // Proceedings of the IEEE International Conference on Data Mining. 2006. P. 818–822. 25. Liben-Nowell D., Kleinberg J. The Link Prediction Problem for Social Networks // Proceedings of the 12th International Conference on Information and Knowledge Management. N. Y.: ACM Press, 2003. P. 556–559. 26. Kumar R., Novak J., Raghavan P., Tomkins A. Structure and Evolution of Blogspace // Commun. ACM. 2004. Vol. 47. No. 12. P. 35–39. 27. Érétéo G., Gandon F., Buffa M., Corby O. Semantic Social Network Analysis // Proceedings of the 8th International Semantic Web Conference. 2009. P. 180–195. 28. Прохоров А., Ларичев Н. Компьютерная визуализация социальных сетей // КомпьютерПресс. 2006. № 9. С. 156–160. 29. Huisman M., Marijtje A. J. van Duijn. A Reader’s Guide to SNA Software // The SAGE Handbook of Social Network Analysis. SAGE. 2011. P. 578–600. ru_RU
dc.subject.udc 519.68; 681.513.7; 612.8.001.57; 007.51/.52
dc.relation.ispartofvolume 10
dc.relation.ispartofnumber 4
dc.relation.ispartofpages 13-28
Читайте также:  Схемы построения локальной компьютерной сети



Источник

Оцените статью
Adblock
detector