Модели теории графов основные понятия сетевого планирования

Сетевые модели Основные понятия теории графов

Теория графов является эффективным алгоритмом формализации задач экономической и планово-производственной практики. Ее применяют в автоматизации управления производством, календарном и сетевом планировании, при оптимизации размещения производства, рационализации перевозок и т.д.

Представим множество точек на плоскости или в пространстве (вершины графа) и отрезки линий, соединяющих все или некоторые из этих точек. Взаимное расположение, длина, форма этих отрезков не имеют значения.

Если на отрезке указано направление, то он называется дугой.

Если ориентация не указана, отрезок называется ребром.

Совокупность вершин и дуг (ребер) называется графом.

Если концевые вершины дуги (ребра) совпадают, то дугу (ребро) называют петлей.

Дуги и ребра с одинаковыми концевыми вершинами называются параллельными.

ПАРАЛЛЕЛЬНЫЕ ДУГА И РЕБРО

Граф называется конечным, если он содержит конечное число вершин.

Граф называется взвешенным, если каждая дуга (ребро) характеризуется одним или несколькими числами.

Если в графе все отрезки ориентированы, то он называется орграфом.

При изображении графа его вершины можно располагать произвольно и по своему усмотрению выбирать форму соединяющих их линий.

Графы называются изоморфными, если между их вершинами существует такое взаимно однозначное соответствие, при котором две вершины одного графа соединены отрезками тогда и только тогда, когда соответствующие вершины другого графа соединены отрезками. При этом направление дуг сохраняется.

Граф называется простым, если он не содержит петель и параллельных дуг (ребер).

Путем в орграфе называется последовательность дуг, в которой конец каждой предыдущей дуги совпадает с началом следующей.

Читайте также:  Уровень сетевой модели данных это

Циклом называется путь, у которого совпадают начальная и конечная вершины.

Для графов существует способ упорядочения (алгоритм Фалкерсона).

1)Находят вершины графа, в которые не входит ни одна дуга. Эти вершины образуют первую группу. Нумеруют вершины группы в натуральном порядке 1,2,… . При этом присвоение номеров внутри группы может быть произвольным.

2)Мысленно вычеркивают все пронумерованные вершины и дуги из них выходящие. В полученном графе находят вершины графа, в которые не входит ни одна дуга. Эти вершины образуют вторую группу. И т.д.

Аналогично можно упорядочивать по дугам.

Источник

1.2 Основные понятия сетевого планирования

Следует выделить следующие понятия, необходимые для сетевого планирования.

Работа – производственный процесс, требующий затрат времени и материальных ресурсов и приводящий к достижению определенных результатов.

По своей физической природе работы можно рассматривать как действие (например, заливка фундамента бетоном, составление заявки на материалы, изучение конъюнктуры рынка), процесс (пример — старение отливок, выдерживание вина, травление плат) и ожидание (процесс, требующий только затраты времени и не потребляющий никаких ресурсов; является технологическим (твердение цементной стяжки) или организационным (ожидание сухой погоды) перерывом между работами, непосредственно выполняемым друг за другом.

По количеству затрачиваемого времени работа может быть:

  • действительной, то есть протяжённым во времени процессом, требующим затрат ресурсов;
  • фиктивной (или зависимостью), не требующей затрат времени и представляющей связь между какими-либо работами: передача измененных чертежей от конструкторов к технологам, сдача отчета о технико-экономических показателях работы цеха вышестоящему подразделению.

1.3 Правила построения сетевых моделей

  • какие работы должны быть завершены до начала данной работы;
  • какие работы должны быть начаты после завершения данной работы;
  • какие работы необходимо выполнять одновременно с выполнением данной работы.

Источник

Основные понятия сетевого планирования и управления

Основные параметры сетевой модели системы планирования и управления

Математический аппарат сетевых моделей базируется на теории графов.

Читайте также:  Затухание в компьютерной сети

Графом называется совокупность двух конечных множеств:

— множества точек, которые называются вершинами, и множества пар вершин, которые называются ребрами. Если рассматриваемые пары вершин являются упорядоченными, т. е. на каждом ребре задается направление, то граф называется ориентированным; в противном случае — неориентированным. Последовательность неповторяющихся ребер, ведущая от некоторой вершины к другой, образует путь.

Граф называется связным, если для любых двух его вершин существует путь, их соединяющий; в противном случае граф называется несвязным.

В экономике чаще всего используются два вида графов: дерево и сеть.

Дерево представляет собой связный граф без циклов, имеющий исходную вершину (корень) и крайние вершины; пути от исходной вершины к крайним вершинам называются ветвями.

Сеть — это ориентированный конечный связный граф, имеющий начальную вершину (источник) и конечную вершину (сток). Таким образом, сетевая модель представляет собой граф вида «сеть».

В экономических исследованиях сетевые модели возникают при моделировании экономических процессов методами сетевого планирования и управления (СПУ).

Объектом управления в системах сетевого планирования и управления являются коллективы исполнителей, располагающих определенными ресурсами и выполняющих определенный комплекс операций, который призван обеспечить достижение намеченной цели, например, разработку нового изделия, строительства объекта и т.п.

Основой сетевого планирования и управления является сетевая модель (СМ), в которой моделируется совокупность взаимосвязанных работ и событий, отображающих процесс достижения определенной цели. Она может быть представлена в виде графика или таблицы.

Основные понятия сетевой модели:

Работа характеризует материальное действие, требующее использования ресурсов, или логическое, требующее лишь взаимосвязи событий. При графическом представлении работа изображается стрелкой, которая соединяет два события. Она обозначается парой заключенных в скобки чисел (i,j), где i — номер события, из которого работа выходит, а j — номер события, в которое она входит. Работа не может начаться раньше, чем свершится событие, из которого она выходит. Каждая работа имеет определенную продолжительность t (i,j)-Например, запись t (2,5) = 4 означает, что работа (2,5) имеет продолжительность 5 единиц.

Читайте также:  Общая характеристика глобальной компьютерной сети

На рис. 1 графически представлена сетевая модель, состоящая из 11 событий и 16 работ, продолжительность выполнения которых указана над работами.

«Рисунок 1 — Пример сетевой модели».

Событиями называются результаты выполнения одной или нескольких работ. Они не имеют протяженности во времени. Событие свершается в тот момент, когда оканчивается последняя из работ, входящая в него. События обозначаются одним числом и при графическом представлении сетевая модель изображаются кружком (или иной геометрической фигурой), внутри которого проставляется его порядковый номер (i = 1, 2, . n).

В сетевой модели имеется начальное событие (с номером 1), из которого работы только выходят, и конечное событие (с номером N), в которое работы только входят.

Путь — это цепочка следующих друг за другом работ, соединяющих начальную и конечную вершины, например, в приведенной выше модели путями являются L1 = (1, 2, 3, 7, 10, 11), L2 = (1, 2, 4, 6, 11) и др.

Продолжительность пути определяется суммой продолжительностей составляющих его работ. Путь, имеющий максимальную длину, называют критическим и обозначают LKp, а его продолжительность — tкр. Работы, принадлежащие критическому пути, называются критическими. Их несвоевременное выполнение ведет к срыву сроков всего комплекса работ.

Сетевая модель имеют ряд характеристик, которые позволяют определить степень напряженности выполнения отдельных работ, а также всего их комплекса и принять решение о перераспределении ресурсов.

Источник

Оцените статью
Adblock
detector