Топологии
Вы узнали из предыдущей темы, что канальный уровень подготавливает сетевые данные для физической сети. Он должен знать логическую топологию сети, чтобы иметь возможность определить, что необходимо для передачи кадров с одного устройства на другое. В этом разделе объясняется, как канальный уровень связи данных работает с различными логическими топологиями сети.
Топология сети описывает расположение или взаимосвязь сетевых устройств, а также соединения между ними.
Существует два типа топологий, используемых при описании сетей LAN и WAN:
- Физическая топология – Этот термин относится к физическим соединениям и определяет, каким образом соединяются друг с другом оконечные устройства и устройства сетевой инфраструктуры, такие как маршрутизаторы, коммутаторы и точки беспроводного доступа. Топология может также включать определенное местоположение устройства, например номер комнаты и местоположение на стойке оборудования. Физическая топология чаще всего организована по схеме «точка-точка» или «звезда».
- Логическая топология – Термин, используемый для описания путей передачи кадров между узлами. Эта топология определяет виртуальные подключения с использованием интерфейсов устройств и схем IP-адресации уровня 3.
При управлении доступом данных к среде канальный уровень «видит» логическую топологию сети. Именно логическая топология влияет на выбор типа кадрирования в сети и управления доступом к среде.
На рисунке отображается образец физической топологии для небольшой выборки сети.
Топология физической сети показывает шесть комнат, каждая из которых выделена светло-желтым прямоугольником, с различными сетевыми устройствами и кабелями. С левой стороны находится серверная комната с надписью комната 2158. Он содержит маршрутизатор с маркировкой R1, установленный на полке 1 стойки 1 с шестью кабельными соединениями. Кабель в верхней части подключается к облаку с надписью Интернет. Кабель слева подключается к коммутатору с надписью S1, установленному на полке 2 стойки 1. S1 подключен к трем серверам: веб-серверу, установленному на полке 1 стойки 2, почтовому серверу, установленному на полке 2 стойки, и файловому серверу, установленному на полке 3 стойки 2. Кабель, подключенный к нижней части R1, подключается к коммутатору с пометкой S2 установлен на стойке 1 полка 3. S2 имеет два соединения, ведущие к принтеру и ПК в ИТ-офисе с пометкой комната 2159. R1 имеет три кабеля справа, подключенных к трем коммутаторам, расположенным в комнате 2124. Верхний коммутатор имеет маркировку S3 и установлен на полке 1 стойки 1. Средний переключатель имеет маркировку S4 и установлен на стойке 1 полка 2. Нижний выключатель имеет маркировку S5 и установлен на стойке 1 полка 3. S3 имеет кабель слева подключен к ноутбуку в комнате класса 1 комната 2125. S4 имеет кабель слева подключен к ноутбуку в комнате класса 2 комната 2126. S5 имеет кабель слева подключен к ноутбуку в комнате класса 3 комната 2127.
На следующем рисунке показан пример logical топологии для той же сети.
В логической топологии сети отображаются устройства, метки портов и схема сетевой адресации. В середине изображения находится маршрутизатор с надписью R1. Порт с надписью G0/0/0 подключается к облаку в верхней части помеченного Интернета. Порт с надписью G0/2/0 подключается слева к коммутатору с надписью S1 на порту G0/1. S1 подключен к трем серверам. S1 и серверы подсвечены светло-желтым кругом с сетью 192.168.10.0/24, написанной вверху. Порт F0/1 на S1 подключается к веб-серверу. Порт F0/2 на S1 подключается к почтовому серверу. Порт F0/3 на S1 подключается к файловому серверу. Порт G0/0/1 на R1 соединяется внизу к коммутатору с надписью S2. S2 подключается к принтеру и ПК, все из которых выделены в светло-желтый круг с сетью 192.168.11.0/24, написанной внизу. Справа от R1 расположены три дополнительных соединения, каждое из которых подключается к коммутатору на порту G0/1, который затем подключается к ноутбуку на порту F0/1. Каждый коммутатор и ноутбук выделены желтым цветом, а сетевой адрес отображается. Порт G0/0/1 R1 подключается вверху к коммутатору с меткой S3 в сети 192.168.100.0. Порт G0/1/0 R1 соединяется посередине с коммутатором S4 в сети 192.169.101.0. Порт G0/1/1 на R1 подключается внизу к коммутатору с надписью S5 в сети 192.168.102.0. R1 подключается к Интернету по интерфейсу G0/0/0.
Топология компьютерных сетей
Компьютерная сеть представляет собой совокупность узлов [компьютеров, средств коммутации] и соединяющих их ветвей. Ветвь сети — это путь, соединяющий два смежных узла.
Узлы сети бывают трёх типов:
- оконечный узел — расположен в конце только одной ветви;
- промежуточный узел — расположен на концах более чем одной ветви;
- смежный узел — такие узлы соединены по крайней мере одним путём, не содержащим никаких других узлов.
Компьютеры могут объединяться в сеть разными способами. Способ соединения компьютеров в сеть называется её топологией. Топология сети соответствует ее физической структуре, которая определяет физические связи между компьютерами и может отличаться от логической структуры сети. Логическая структура определяет маршруты передачи данных между узлами сети и образуется путем соответствующей настройки коммуникационного оборудования. Выбор топологии физических связей существенно влияет на многие характеристики сети. Например, наличие резе рвных связей повышает надежность сети и повышает ее пропускную способность. Простота подключения к сети новых узлов, свойственная некоторым топологиям, делает сеть легко расширяемой. Экономические соображения часто приводят к выбору топологий, для которых характерна минимальная суммарная длинна линий связи. Рассмотрим некоторые, наиболее распространенные топологии.
Полносвязная топология — это сеть, в которой имеется ветвь между любыми двумя узлами [рис.1]. Несмотря на логическую простоту, эта топология оказывается громоздкой и неэффективной. Действительно, каждый компьютер в сети должен иметь большое количество коммуникационных портов. Для каждой пары компьютеров должна быть выделена отдельная линия связи. Полносвязные топологии применяются редко. Однако, все другие варианты топологий можно получить из полносвязной путем удаления некоторых возможных связей. Тогда для обмена данными между компьютерами может потребоваться передача данных через другие узлы сети. | Рис. 1. Полносвязная топология |
Ячеистая топология получается из полносвязной путем удаления некоторых возможных связей [рис.2]. Непосредственно связываются только те узлы, между которыми осуществляется интенсивный обмен данными, а для обмена данными между несмежными узлами используются промежуточные узлы. Ячеистая топология допускает соединение большого количества компьютеров и характерна, как правило, для глобальных сетей. | Рис. 2. Ячеистая топология |
Топология общая шина содержит только два оконечных узла, любое число промежуточных узлов и имеет только один путь между любыми двумя узлами [рис. 3]. Общая шина — очень распространенная топология локальных сетей. Ее достоинствами являются минимальная суммарная длинна линий связи, сравнительно недорогое и несложное в использовании коммуникационное оборудование, легкость расширения сети, а ее недостатками — низкая пропускная способность, низкая надежность сети [обрыв одной ветви линии связи останавливает работу всей сети] | Рис. 3. Топология общая шина |
Топология звезда — это сеть, в которой имеется только один промежуточный узел [рис. 4]. Главным преимуществом данной топологии перед общей шиной является существенно большая надежность и централизованный контроль над потоком информации в сети. К недостаткам топологии типа звезда относится более высокая стоимость коммуникационного оборудования. Работа сети останавливается, когда выходит из строя промежуточный узел. Обрыв одной ветви линии связи не приводит к остановке сети. | Рис. 4. Топология звезда |
Древовидная топология — это сеть, которая содержит более двух оконечных узлов и по крайней мере два промежуточных узла, и в которой между двумя узлами имеется только один путь [рис. 5]. Иногда данную топологию называют иерархической звездой. В настоящее время древовидная топология является самым распространенным типом связей как в локальных, так и глобальных сетях. | Рис. 5. Древовидная топология |
Топология кольцо — это сеть, в которой к каждому узлу присоединены две и только две ветви [рис. 6]. В сетях с кольцевой топологией данные передаются по кольцу от одного узла к другому, как правило, в одном направлении. При разрыве одной ветви или отказе одного узла сети требуются дополнительные меры, чтобы сохранить работоспособность сети в целом. | Рис. 6. Топология кольцо |
В то время как небольшие сети, как правило, имеют типовую топологию — звезда, кольцо или общая шина, для крупных сетей характерно наличие произвольных связей между узлами, т.е. смешанная топология [рис. 7]. Смешанная топология — это большая сеть, в которой можно выделить отдельные произвольно связанные фрагменты [подсети], имеющие типовую топологию. | Рис. 7. Смешанная топология |
Артём Санников
Данная книга является руководством для начинающих специалистов в области анализа и обработки данных. В книге рассматривается язык SQL и его процедурное расширение PL/SQL от компании Oracle.
Главная › Cisco › CCNA: Introduction to Networks › Распространенные физические топологии глобальных сетей. CCNA Routing and Switching.
Распространенные физические топологии глобальных сетей. CCNA Routing and Switching.
Соединения в глобальных сетях обычно организуются с помощью следующих физических топологий.
«Точка-точка» (Point-to-Point): это простейшая топология, представляющая собой постоянное соединение между двумя оконечными точками. Именно по этой причине данная топология глобальной сети является наиболее распространенной.
«Звездообразная» (Hub and spoke): версия звездообразной топологии для глобальной сети, в которой центральный узел соединен с периферийными с помощью соединений «точка-точка».
Ячеистая (Mesh): эта топология обеспечивает высокую доступность, но требует, чтобы каждая оконечная система была связана со всеми остальными системами. Поэтому расходы на построение и администрирование такой сети могут быть весьма значительными. Каждый канал в такой сети фактически является каналом, связанным с другим узлом соединением «точка-точка». Вариантом этой топологии является частично связанная ячеистая (partial mesh) топология, в которой друг с другом соединены некоторые, но не все оконечные устройства.