Обмен данными в локальных вычислительных сетях

Методы обмена данными в локальных сетях

Для управления обменом (управления доступом к сети, арбитражу сети) используются различные методы, особенности которых в значительной степени зависят от топологии сети. Существует несколько групп методов доступа, основанных на временном разделении канала:

 централизованные и децентрализованные

 детерминированные и случайные Централизованный доступ управляется из центра управления сетью, например от сервера. Децентрализованный метод доступа функционирует на основе протоколов без управляющих воздействий со стороны центра. Детерминированный доступ обеспечивает каждой рабочей станции гарантированное время доступа (например, время доступа по расписанию) к среде передачи данных. Случайный доступ основан на равноправности всех станций сети и их возможности в любой момент обратиться к среде с целью передачи данных.

Централизованный доступ к моноканалу

В сетях с централизованным доступом используются два способа доступа: метод опроса и метод передачи полномочий. Эти методы используются в сетях с явно выраженным центром управления. Метод опроса. Обмен данными в ЛВС с топологией звезда с активным центром (центральным сервером). При данной топологии все станции могут решить передавать информацию серверу одновременно. Центральный сервер может производить обмен только с одной рабочей станцией. Поэтому в любой момент надо выделить только одну станцию, ведущую передачу. Центральный сервер посылает запросы по очереди всем станциям. Каждая рабочая станция, которая хочет передавать данные (первая из опрошенных), посылает ответ или же сразу начинает передачу. После окончания сеанса передачи центральный сервер продолжает опрос по кругу. Станции, в данном случае, имеют следующие приоритеты: максимальный приоритет у той из них, которая ближе расположена к последней станции, закончившей обмен. Обмен данными в сети с топологией шина. В этой топологии, возможно, такое же централизованное управление, как и в “звезде”. Один из узлов (центральный) посылает всем остальным запросы, выясняя, кто хочет передавать, и затем разрешает передачу тому из них, кто после окончания передачи сообщает об этом. Метод передачи полномочий (передача маркера) Маркер — служебный пакет определенного формата, в который клиенты могут помещать свои информационные пакеты. Последовательность передачи маркера по сети от одной рабочей станции к другой задается сервером. Рабочая станция получает полномочия на доступ к среде передачи данных при получении специального пакета-маркера. Данный метод доступа для сетей с шинной и звездной топологией обеспечиваетcя протоколом ArcNet.

Читайте также:  Сетевой уровень модели osi его задачи

Децентрализованный доступ к моноканалу

Рассмотрим децентрализованный детерминированный и случайный методы доступа к среде передачи данных. К децентрализованному детерминированному методу относится метод передачи маркера. Метод передачи маркера использует пакет, называемый маркером. Маркер — это не имеющий адреса, свободно циркулирующий по сети пакет, он может быть свободным или занятым.

Обмен данными в сети с топологией кольцо

1. В данной сети применяется метод доступа “передача маркера”. Алгоритм передачи следующий: а) узел, желающий передать, ждет свободный маркер, получив который помечает его как занятый (изменяет соответствующие биты), добавляет к нему свой пакет и результат отправляет дальше в кольцо; б) каждый узел, получивший такой маркер, принимает его, проверяет, ему ли адресован пакет; в) если пакет адресован этому узлу, то узел устанавливает в маркере специально выделенный бит подтверждения и отправляет измененный маркер с пакетом дальше; г) передававший узел получает обратно свою посылку, прошедшую через все кольцо, освобождает маркер (помечает его как свободный) и снова посылает маркер в сеть. При этом передававший узел знает, была ли получена его посылка или нет. Для нормального функционирования данной сети необходимо, чтобы один из компьютеров или специальное устройство следило за тем, чтобы маркер не потерялся, а в случае пропажи маркера данный компьютер должен создать его и запустить в сеть.

Обмен данными в сети с топологией шина

В этом случае все узлы имеют равный доступ к сети и решение, когда можно передавать, принимается каждым узлом на месте, исходя из анализа состояния сети. Возникает конкуренция между узлами за захват сети, и, следовательно, возможны конфликты между ними, а также искажения передаваемых данных из-за наложения пакетов.

Читайте также:  Протокол internet сетевой протокол стека tcp ip

Рассмотрим наиболее часто применяющийся метод множественного доступа с контролем несущей и обнаружением коллизий (столкновений) (CSMA/CD). Суть алгоритма в следующем: 1) узел, желающий передавать информацию, следит за состоянием сети, и как только она освободится, то начинает передачу; 2) узел передает данные и одновременно контролирует состояние сети (контролем несущей и обнаружением коллизий). Если столкновений не обнаружилось, передача доводится до конца; 3) если столкновение обнаружено, то узел усиливает его (передает еще некоторое время) для гарантии обнаружения всеми передающими узлами, а затем прекращает передачу. Также поступают и другие передававшие узлы; 4) после прекращения неудачной попытки узел выдерживает случайно выбираемый промежуток времени tзад, а затем повторяет свою попытку передать, при этом контролируя столкновения. При повторном столкновении tзад увеличивается. В конечном счете, один из узлов опережает другие узлы и успешно передает данные. Метод CSMA/CD часто называют методом состязаний. Этот метод для сетей с шиной топологией реализуется протоколом Ethernet.

Источник

1.2. Среда и методы передачи данных в вычислительных сетях

Необходимо отметить, что в настоящее время кроме компьютерных сетей применяются и терминальные сети. Следует различать компьютерные сети и терминальные сети. Терминальные сети строятся на других, чем компьютерные сети, принципах и на другой вычислительной технике. К терминальным сетям, например, относятся: сети банкоматов, кассы предварительной продажи билетов на различные виды транспорта и т.д. Первые мощные компьютеры 50-годов, так называемые мэйнфреймы, были очень дорогими и предназначались только для пакетной обработки данных. Пакетная обработка данных самый эффективный режим использования процессора дорогостоящей вычислительной машины. С появлением более дешевых процессоров начали развиваться интерактивные терминальные системы разделения времени на базе мэйнфреймов. Терминальные сети связывали мэйнфреймы с терминалами. Терминал — это устройство для взаимодействия с вычислительной машиной, которое состоит из средства ввода (например, клавиатуры) и средств вывода информации (например, дисплея). Сами терминалы практически никакой обработки данных не осуществляли, а использовали возможности мощной и дорогой центральной ЭВМ. Эта организация работы называлась “режимом разделения времени”, так как центральная ЭВМ последовательно во времени решала задачи множества пользователей. При этом совместно использовались дорогие вычислительные ресурсы. Удаленные терминалы соединялись с компьютерами через телефонные сети с помощью модемов. Такие сети позволяли многочисленным пользователям получать удаленный доступ к разделяемым ресурсам мощных ЭВМ. Затем мощные ЭВМ объединялись между собой, так появились глобальные вычислительные сети. Таким образом, сначала сети применялись для передачи цифровых данных между терминалом и большой вычислительной машиной. Первые ЛВС появились в начале 70-х годов, когда были выпущены мини-компьютеры. Мини-компьютеры были намного дешевле мэйнфреймов, что позволило использовать их в структурных подразделениях предприятий. Затем появилась необходимость обмена данными между машинами разных подразделений. Для этого многие предприятия стали соединять свои мини-компьютеры и разрабатывать программное обеспечение, необходимое для их взаимодействия. В результате появились первые ЛВС. Появление персональных компьютеров послужило стимулом для дальнейшего развития ЛВС. Они были достаточно дешевыми и являлись идеальными элементами для построения сетей. Развитию ЛВС способствовало появление стандартных технологий объединения компьютеров в сети: Ethernet, Arcnet, Token Ring. Появление качественных линии связи обеспечили достаточно высокую скорость передачи данных – 10 Мбит/с, тогда как глобальные сети, использовали только плохо приспособленные для передачи данных телефонные каналы связи, имели низкую скорость передачи – 1200 бит/c. Из-за такого различия в скоростях многие технологии, применяемые в ЛВС, были недоступны для использования в глобальных. В настоящее время сетевые технологии интенсивно развиваются, и разрыв между локальными и глобальными сетями сокращается во многом благодаря появлению высокоскоростных территориальных каналов связи, не уступающих по качеству кабельным системам ЛВС. Новые технологии сделали возможным передачу таких несвойственных ранее вычислительным сетям носителей информации, как голос, видеоизображения и рисунки. Сложность передачи мультимедийной информации по сети связана с ее чувствительностью к задержкам при передаче пакетов данных (задержки обычно приводят к искажению такой информации в конечных узлах связи). Но эта проблема решается и конвергенция телекоммуникационных сетей (радио, телефонных, телевизионных и вычислительных сетей) открывает новые возможности для передачи данных, голоса и изображения по глобальным сетям Интернет.

Читайте также:  Построить сетевую модель по исходным данным

Источник

Оцените статью
Adblock
detector