Одноранговую локальную сеть с топологией кольцо вывод

4.3.Топология «кольцо» (Ring)

Рабочие станции связаны одна с другой по кругу, то есть первая рабочая станция связана со второй, вторая — с третьей и т.д., а последняя рабочая станция связана с первой. Коммуникационная сеть замыкается в кольцо. Можно начать движение из любой точки сети и потом вернуться в стартовую точку, потому что данные здесь перемещаются по кольцу от узла к узлу только в одном направлении. Каждый узел принимает сигнал данных, анализирует информацию и, если сообщение адресовано другому узлу, передает его по кольцу к следующему узлу (рис. 3).

Рис. 3. Топология сети «кольцо»

Достоинства топологии «кольцо»:

• легко локализуются неисправности в кабельных соединениях;

• можно подсоединить к сети большее количество узлов, чем при использовании других топологий, так как при просмотре данных каждым узлом происходит очистка и усиление сигнала, а затем отправка следующему компьютеру. Поэтому потери сигнала меньше, чем при других топологиях;

• не существует ограничений на протяженность сети, поэтому кольцо используется для создания сетей, охватывающих большое географическое пространство.

Недостатки топологии «кольцо»:

• прокладка кабелей может быть довольно сложной и дорогостоящей, особенно если географическое расположение рабочих станций далеко от формы кольца (например, в линию);

• подключение новой рабочей станции требует краткосрочного выключения сети, так как во время установки кольцо должно быть разомкнуто;

• требуется непрерывное соединение между всеми сетевыми компьютерами, так как разрыв в любом месте вызовет прекращение работы всей сети (для предотвращения этого иногда используется резервный кабель для передачи данных).

Достоинства и недостатки трех существующих топологий объединены в таблице 1.

Характеристики сетевых топологий

Возможность охвата большой области

Простота поиска неисправностей

Легкость перемещения узла

Пропускная способность узла

Итак, наиболее часто используется сетевая топология — звезда.

От выбранной топологии зависит используемая сетевая технология, которая определяет правила обмена данными между компьютерами в сети (часто называют архитектурой сети). Наиболее популярны две сетевых технологии: Ethernet и Token Ring.

1. Технология Ethernet используется для топологий шина (на коаксиальном кабеле) и звезда (на витой паре).

В такой сети, прежде чем начать передачу данных, каждый узел проверяет сетевой трафик на шине. Если один узел видит, что другой ведет передачу данных, то он ждет, пока эта передача закончится, и только после этого начинает передавать свои данные.

Несмотря на существующие правила передачи данных, часто случается так, что два узла пытаются сделать это одновременно. Тогда возникает столкновение данных (коллизия), в результате чего теряется информация. В этом случае система обнаружения столкновений Ethernet требует, чтобы узлы прекратили передачу информации, и каждый из них ожидает некоторое время, прежде чем снова попробовать передать свои данные.

Читайте также:  Компьютерные сети принадлежат к средствам

2. Технология Token Ring (эстафетное кольцо) является гибридной смесью звездообразной и кольцевой топологий (разработка компании IВМ).

В ней используется звездообразная топология совместно с центральным концентратором MAU (Multistation Access Unit — многостанционный модуль доступа). При этом каждый компьютер в сети соединяется с концентратором при помощи двух кабелей (кольцевая топология): компьютер передает данные концентратору по одной линии, а принимает их по другой.

Технология Token Ring предотвращает столкновение данных, требуя, чтобы узлы получали разрешение от сети прежде, чем они смогут начать передачу данных. Для этого узел должен захватить специальный пакет данных (маркер). Если он не используется никакими узлами сети, то он свободен, и узел может захватить его, а затем использовать для передачи данных. Один разрешающий маркер непрерывно перемещается по кольцу в одном направлении, ожидая, пока какой-нибудь узел не воспользуется им.

В зависимости от выбранной топологии и технологии сети подбирается необходимая сетевая среда — линии связи, по которым распространяются электрические сигналы. Так для построения сети на базе технологии Ethernet можно применять пять различных типов кабеля: коаксиальный (тонкий и толстый), витую пару (неэкранированную и экранированную) и волоконно-оптический кабель.

1. Тонкий коаксиальный кабель (Thin Coaxial Cable 10BASE2) типа RG-58 используется для дешевой сетевой топологии

«шина». Скорость передачи данных — 10 Мбит/с. Максимальная длина используемого кабеля — 190 м (при необходимости большей длины ставятся повторители).

2. Толстый коаксиальный кабель (Thick Coaxial Cable 10BASE5) часто используется в качестве магистрали (главного кабеля, к которому подключаются тонкие кабели, соединяющие ПК с сетью). К нему можно подключать до 100 узлов. Скорость передачи данных — такая же (10 Мбит/с). Максимальная длина используемого кабеля — 500 м.

3. Неэкранированная витая пара (Unshielded Twisted Pair UTP 10BASET) используется в сетевой топологии «звезда», часто для сокращения расходов (примерно в два раза дешевле экранированной). Скорость передачи данных — такая же (10Мбит/с). Максимальная длина используемого кабеля— 110м.

4. Экранированная витая пара (Shielded Twisted Pair STP 100BASE-T) используется в сетевой топологии «звезда», особенно, при наличии высоких уровней электромагнитных или радиочастотных помех. Скорость передачи данных (по кабелю 5 уровня) — 100 Мбит/с.

5. Волоконно-оптический кабель (Fiberoptical cable FOC) используется для соединения офисов, расположенных на больших расстояниях (несколько км), а также при наличии сильных электромагнитных или радиочастотных помех. Скорость передачи данных — несколько Гбит/с. Самая дорогая сетевая среда.

Читайте также:  Виды топологий нейронных сетей

Источник

Основные плюсы и минусы топологии кольцо

Основные плюсы и минусы топологии кольцо

Кольцевая сеть представляет собой конфигурацию, в которой каждый узел соединяется ровно с двумя другими узлами, образуя единый непрерывный путь для сигналов через каждый компьютер — кольцо. Данные перемещаются от узла к узлу, причем каждый из них на своем пути обрабатывает каждый пакет.

Особенности

Кольцевые топологии соединяют все устройства сети в последовательную цепь. Данные перемещаются с одного устройства на другое, пока не достигают места назначения и, наконец, не возвращаются в операционный центр. Эта конфигурация требует меньшего количества кабелей и траншей, чем альтернативные топологии типа “звезда”, и, следовательно, она проще и экономичнее в реализации.

В случае традиционных кольцевых топологий, если одно из устройств в кольце выходит из строя, это влияет на всю сеть. Поэтому можно потерять все потоки с нескольких узлов в сети одновременно. Для разрешения этой проблемы, были разработаны и запатентованы более гибкие кольцевые конфигурации. Это привело к повышенной отказоустойчивости сети и времени переключения при сбое, позволяя данным перемещаться в двух направлениях по кольцу. В сочетании с промышленными коммутаторами Ethernet эластичная кольцевая топология может восстановить сеть за 15–30 миллисекунд, такая скорость позволяет не пропустить ни одного сигнала.

Топология кольцо

Плюсы топологии

  • Простая настройка. Кольцевая топология довольно просто настраивается. Для подключения компьютеров друг к другу не требуется сервер или центральная рабочая станция. Они могут быть легко связаны между собой, соединяя одно устройство с другим. Она дешевле топологии типа “звезда” или “дерево”, обе из которых требуют центрального или главного устройства для управления узлами.
  • Трафик данных. Кольцевая топология может обрабатывать большой объем трафика, поскольку данные передаются однонаправленно. Это упрощает поток данных и предотвращает перегрузку сети. Это также снижает вероятность повреждения данных.
  • Устранение неполадок. Когда происходит ошибка, легко определить, где она произошла, поскольку последовательная передача данных, дает понять на каком из узлов связь была разорвана.
  • Качество работы при нагрузке. Не все системы могут выдерживать большую потоковую нагрузку на сеть. Например, если сравнивать кольцо с шиной, то первая будет работать значительно лучше. Топология кольцо может достаточно спокойно работать в условиях повышенной нагрузки.
  • Нет центрального узла. Некоторые системы имеют структуру, которая подразумевает наличие центрального компьютера, но такая централизация иногда может только навредить сети. Топология кольцо не имеет главного центрального узла, который предназначен для управления и контроля связи между узлами, поэтому проблемы с этим аспектом ей не страшны.
  • Пропускная способность. Подключение дополнительных узлов очень мало или совсем не влияет на пропускную способность сети.
  • Упорядоченность. Данная топология предполагает, что сеть будет очень упорядоченная, где каждое устройство имеет доступ к токену и возможность передачи.
  • Передача данных. Передача данных относительно проста, поскольку пакеты перемещаются только в одном направлении.
Читайте также:  Всемирная информационная компьютерная сеть для хранения обработки и передачи информации

Недостатки

  • Репликация данных. Репликация данных в кольцевой топологии менее эффективна, чем в звездной. В конфигурации “звезда” центральный сервер или компьютер могут напрямую реплицировать данные на всех других устройствах одновременно. В кольцевой топологии данные будут скопированы с одного устройства на другое до того, как все компьютеры получат одинаковые данные.
  • Сбои сети. Хотя легко устранить неполадки при настройке кольцевой топологии, при сбое одного устройства происходит сбой всей сети из-за обрыва линии связи. Пока узел не будет починен или заменен, сеть работать не будет.
  • Расширение. Другой недостаток такой конфигурации обнаруживается, при расширении сети. Если в исходной конфигурации есть пять компьютеров, а затем нужно добавить еще пять, то придется отключить всю сеть, прежде чем приступать к ее расширению. Чтобы разместить дополнительные компьютеры в такую систему, необходимо отключить каждое соединение и подключить новые устройства в установку с обратной связью, прежде чем снова перенастраивать всю сеть.
  • Одно соединение. В данном типе подключения используется кабель одной длины, соединяющий все компьютеры и образующий петлю. В случае обрыва кабеля все системы в сети не смогут получить доступ к сети. Поэтому возникает полная зависимость от одного кабеля.
  • Скорость работы. Пакеты данных должны проходить через каждый компьютер между отправителем и получателем, поэтому это может приводить к замедлению передачи.

Вывод

Как правило, когда речь заходит о кольцевой топологии, то говорят об однонаправленности передачи сигнала, хотя существуют и двунаправленные кольцевые топологии. Чтобы сделать передачу двунаправленной, потребуется два соединения между узлами сети для формирования конфигурации двойного кольца. Кольцевые топологии могут поддерживать большие сети гораздо эффективнее, чем шинные. Также рекомендуется подключать ретранслятор, который поможет минимизировать потери пакетов во время передачи данных.

Двойное кольцо

В глобальных (WAN) и в метрологических локальных сетях (MAN) кольцевая топология используется в качестве связи с клиентами. Как раз в таких случаях обычно используется двунаправленная система передачи, то есть сигнал будет идти в обоих направлениях. Это нужно для того чтобы, иметь два отличных пути к общему коммутатору.

Так как каждая из конфигураций имеет свои ограничения, то нужно исходить в первую очередь из них, так как они позволят лучше понять какая из конфигураций подойдет больше всего. В случае, если ограничения не позволяют использовать длинные дорогостоящие кабели, но при этом нужно сконфигурировать быструю скоростную связь, то кольцевая топология будет лучшим выбором.

Источник

Оцените статью
Adblock
detector