Определение топологии сетей протокол
Полный спектр компьютерных услуг!
Сообщение сайта
Внимание!
- Вся информация, расположенная в данном и других разделах форума получена из открытых источников (интернет-ресурсы, средства массовой информации, печатные издания и т.п.) и/или добавлена самими пользователями. Администрация форума предоставляет его участникам площадку для общения / размещения файлов / статей и т.п. и не несет ответственности за содержание сообщений, а также за возможное нарушение авторских, смежных и каких-либо иных прав, которое может повлечь за собой информация, содержащаяся в сообщениях.
Decker
Просмотр профиля
Группа: Главные администраторы
Сообщений: 14349
Регистрация: 12.10.2007
Из: Twilight Zone
Пользователь №: 1
Системное администрирование*,
Сетевые технологии*,
ИТ-инфраструктура*,
Алгоритмы*,
Блог компании Tibbo
Одной из важных технологий любой серьезной системы мониторинга сетей является метод обнаружения связей сетевых элементов на 2-м и 3-м уровне модели OSI.
С точки зрения алгоритмов эта задача является одной из самых интересных встреченных нами во время разработки нашей системы.
Мы решили немного поделиться нашим опытом, чтобы вы могли представить, каким образом красивый граф связей между узлами появляется на дэшбордах вашей системы мониторинга.
Топология сети — это способ описания конфигурации сети, схема расположения и соединения сетевых устройств. Мы будем рассматривать TCP/IP сеть, основу которой образуют сетевые устройства трёх типов: коммутаторы, маршрутизаторы и конечные станции. Мы также будем предполагать, что сетевые устройства, коммутаторы и маршрутизаторы, предоставляют открытый интерфейс для опроса по SNMP.
Для описания топологии удобно рассматривать OSI-модель сети как многоэтажное здание в основе которого лежит фундамент — это физический уровень, а этажи образуют канальный и сетевой уровни, каждый последующий уровень надстраивает здание и таким образом обеспечивает целостность и функциональность всей конструкции. Задача всего здания обеспечить его жителей, то есть различные приложения, связью друг с другом.
В Network Manager реализован алгоритм поиска связей между разнородными устройствами, поддерживающие различные протоколы конфигурации топологии сети, протокол связующего дерева (STP, Spanning Tree Protocol), протоколы LLDP (Link Layer Discovery Protocol) и CDP (Cisco Discovery Protocol). Архитектура программной системы позволяет реализовать поддержку новых протоколов для обнаружения как связей на 2-м и 3-м уровне модели OSI, так и любых других логических связей между элементами ИТ-инфраструктуры.
На канальном уровне связи между устройствами называются связями второго уровня (или L2-связи). Они могут быть заданы указанием пары портов двух непосредственно связанных коммутаторов, или коммутатора и конечной станции, или коммутатора и маршрутизатора.
Коммутаторы поддерживают динамическую таблицу переадресации (AFT, address forwarding table), хранящую соответствие MAC адреса узла порту коммутатора. Эта информация доступна через динамические таблицы доступные по SNMP в BRIDGE-MIB коммутатора (dot1dBasePortTable, dot1dTpFdbTable).
Будем говорить, что коммутатор видит на данном порту данное сетевое устройство, если в его динамической таблице переадресации содержится запись, которая указывает перенаправлять дейтаграммы предназначенные этому сетевому устройству через данный порт.
Для коммутатора с поддержкой базы данных BRIDGE-MIB можно, считывая dot1dBasePortTable, определить соответствие между номером интерфейса и номером порта, а доступные интерфейсы определяются базой данных MIB-II (таблица ifTable). Это позволяет единым образом рассматривать данные о связях 2-го и 3-го уровня.
Для хранения промежуточных результатов в Network Manager используется топологическая база данных, которая предоставляет общий интерфейс для работы с графом сети и его специализациями, предназначенными для работы на канальном и сетевом уровнях.
Автоматическое определение топологии сети разбивается на две фазы: сбор данных и их последующий анализ. Данные с сетевых устройств собираются в топологической базе данных, с помощью SNMP запросов к базам данных сетевых устройств, и определяются типы устройств и их сетевые интерфейсы.
На втором этапе, происходит анализ доступных данных по выбранным протоколам определения топологии сети, для реализации алгоритмов используются доступные в Интернет сети статьи 1, 2 и 5.
Сложность определения топологии разнородной сети состоит в том, что таблицы переадресации коммутаторов динамические, хранят запись соответствия МАС адреса назначения и соответствующего ему порта некоторое ограниченное время, заданное в конфигурации устройства и в общем случае, на момент исследования не все сетевые устройства обменялись дейтаграммами и как результат маршрутизаторы не могут иметь полной информации о всех доступных сетевых устройствах и их связях. Кроме того, во многих корпоративных сетях встречаются неуправляемые коммутаторы, а некоторые коммутаторы могут быть не подключены к системе мониторинга или некорректно поддерживать нужные SNMP MIBы. Однако, если существует сетевое устройство, видимое на всех коммутаторах сети, то по неполным таблицам переадресации можно однозначно восстановить конфигурацию сети (3).
Разнородность сети также влияет на интерпретацию данных полученных от коммутаторов, на которых настроена поддержка протоколов LLDP и CDP, потому что для их корректной работы необходимо, чтобы все ближайшие сетевые устройства поддерживали или LLDP, или CDP протокол. В итоге, информация, полученная из этих протоколов даёт лишь возможность заключить, что два данных сетевых устройства видят друг друга на определённых портах, но не даёт возможности непосредственно определить их как ближайших «соседей».
Алгоритм поиска топологии разнородной сети, реализованный в AggreGate Network Manager, в первую очередь определяет связи между коммутаторами. Общую суть алгоритма можно описать следующим образом:
Рассмотрим два коммутатора «А» и «Б», расположенные в одной подсети. Если коммутатор «А» видит на порту «а» коммутатор «Б», а коммутатор «Б» видит на порту «б» коммутатор «А» и в их таблицах нет другого сетевого устройства, которое одновременно видимо на портах «а» и «б», то коммутаторы «А» и «Б» соединены напрямую на канальном уровне (см. 1, 3 и 5). После нахождения связи мы убираем соотвестствующие ей интерфейсы из кэша таблиц форвардинга и продолжаем анализ оставшейся в таблицах информации, постепенно находя методом исключения остальные связи.
На следующем этапе определяются возможные связи между коммутаторами и конечными станциями. Для этого используется поиск ближайшего коммутатора: если коммутатор видит на данном порту конечную станцию и на том же самом порту он видит другой коммутатор, то, при отсутствие сетевых концентраторов, данный коммутатор не может быть ближайшим (см. 4). С другой стороны, если коммутатор на исследуемом порту видит только одну конечную станцию, то этот коммутатор и станция ближайшие соседи в нашей сети.
С топологией IP-уровня (L3) дела обстоят значительно проще. Линки 3-го уровня достаточно легко определяются по таблицам маршрутизации (ipRouteTable), также доступным по SNMP.
Понимая, что универсальность нашего продукта заставит нас в будущем иметь дело с самыми разными видами топологии, мы спроектировали визуальный компонент «граф топологии» таким образом, чтобы он мог работать с произвольными таблицами, содержащими описания узлов и ребер графа топологии. И, как обычно, при наличии инструмента быстро нашлись ему новые применения:
- Топология маршрутов EIGRP, OSPF, BPG и т.п.
- Визуализация путей в облаке MPLS
- SDH/PDH топология
- Визуализация связей между гипервизорами и работающими на них виртуальными машинами
- Добавленные вручную parent-child связи между узлами
- Граф зависимости компонентов ИТ-сервиса от элементов инфраструктуры
Все технологии, описанные в данной статье, протестированы и внедрены в нашем продукте AggreGate Network Manager. Работа алгоритмов определения связей в условиях недостаточности данных (не все коммутаторы и маршрутизаторы подключены по SNMP, некорректная поддержка нужных MIBов и т.д.) далеко не тривиальна, поэтому мы и по сей день продолжаем совершенствовать их.
- Topology Discovery in Heterogeneous IP Networks: The NetInventory System. Y.Breitbart, M.Garofalakis, B. Jai, C.Martin, R.Rastogi, and A.Silberschatz IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 3, JUNE 2004
- Layer-2 Path Discovery Using Spanning Tree MIBs. David T. Stott, Avaya Labs Research, Avaya Inc., Basking Ridge, NJ, Tech. Rep
- Finding Ethernet-Type Network Topology is Not Easy. H. Gobjuka, Y. Breitbart, Technical Report: TR-KSU-CS-2007-03, Kent State University, 2007.
- Автоматическое определение и описание сетевой инфраструктуры суперкомпьютеров. В. Воеводин, К. Стефанов, Вычислительные Методы и Программирование. 2014. Т. 15
- IP Network Topology Discovery Using SNMP. Suman Pandey, Mi-Jung Choi, Sung-Joo Lee, James W. Hong, Dept. of Computer Science and Engineering, POSTECH, Korea
Протоколы для сетей сложных топологий.
Основными функциями протоколов данного уровня являются:
- Выделение во всем множестве компьютеров подключенных сети, конкретного абонента с которым осуществляется информационный обмен.
- Упорядочивание доступа к среде передачи в случае, когда нескольким парам абонентов требуется осуществить передачу данных.
Адресация абонентов.
- Адрес отправителя. Некоторое число позволяющее идентифицировать сетевой адаптер, который осуществил передачу кадра данных в сеть. Адреса присваиваются сетевым адаптером на заводе изготовителя (MAC-адрес. Media Access Control).
- Адрес получателя. Он определяет ПК который должен принять и обработать кадр.
- Метод обнаружения коллизий. Полное название- множественный доступ к сетям с проверкой несущей и обнаружением коллизий. (Carrier Sense Multiple Access width Collision detection, CSMA/CD). Данный метод предполагает, что перед передачей данных, передающий ПК должен убедиться в свободном состоянии линии, а в процессе передачи прослушивать канал. При обнаружении коллизий (это столкновение с чужими данными) он должен прекратить передачу и попытаться возобновить ее через определенный промежуток времени. Данный метод используется в сетях с топологией шина.
- Метод предупреждений коллизий. Полное название- множественный доступ к сетям с проверкой несущей и предупреждением коллизий. (Carrier Sense Multiple Access width Collision avoidance, CSMA/CA). Этот метод предполагает, что передающий ПК перед началом передачи определяет занятость канала. Убедившись, что канал свободен он оповещает другие ПК о начале передачи.
- Метод передачи маркера. Для того чтобы передать данные ПК должен получить разрешение, для этого он должен поймать данный специального вида (маркер). Маркер перемещается по замкнутому кругу от одного ПК к другому ПК. Получив маркер, ПК может передать его дальше или отправить пакет с данными.
Протоколы канального уровня и сетевые технологии.
- AppleTalk. FDDI и ATM –локальная сеть.
- ATM, FrameRelay, ISDN и SMDS- глобальная сеть.
- RadioEthernet- беспроводные технологии.
- Обеспечить единую систему адресации, не зависящую от сетевой технологии, позволяющую адресовать отдельные узлы.
- Определять путь (последовательность сетей), по которому должны пройти данные, чтобы достичь получателя.
- Обеспечить сквозную передачу данных через сети с разной технологией.