Определение топологии сети cidr

Сетевые технологии: IP-адреса, подсети и бесклассовая адресация CIDR

Понимание сетевых технологий крайне необходимо для настройки сложных сред, эффективного обмена информацией между серверами, управления нодами, а также при разработке безопасных сетевых политик.

Данная статья ознакомит вас с методами проектирования сетей и взаимодействия с компьютерами, которые подключены к сети. В частности здесь рассматриваются сетевые классы, подсети и CIDR-нотация для группирования IP-адресов.

Что такое IP-адрес?

Каждое устройство или место в сети должно иметь свой адрес – некоторое обозначение в рамках предопределенной системы адресов, по которому к этому устройству/месту можно получить доступ. В стандартной модели TCP/IP адресация обрабатывается на нескольких сетевых уровнях. Обычно в контексте сетевых технологий под сетевым адресом подразумевают IP-адрес.

IP-адреса позволяют получать сетевые ресурсы через сетевой интерфейс. Если один компьютер хочет установить связь с другим компьютером, он может передать информацию на IP-адрес удаленного компьютера. Если два компьютера находятся в одной сети и если компьютеры и устройства между ними могут преобразовывать сетевые запросы, компьютеры должны иметь возможность установить соединение и отправлять информацию.

Каждый IP-адрес должен быть уникальным в рамках своей сети. Сети можно изолировать, а можно соединить их между собой и преобразовать, чтобы обеспечить доступ к различным сетям. Преобразование сетевых адресов – это система, которая позволяет переписывать адреса пакетов, достигнувших границы сети, и передать их в указанное место назначения. Таким образом, один IP-адрес можно использовать в нескольких изолированных средах.

Разница между IPv4 и IPv6

Сегодня существует две версии протокола IP, которые широко применяются в системах. IPv4, четвёртая версия протокола, поддерживается большинством систем. Более новая версия, IPv6, набирает популярность благодаря улучшениям возможностей протокола и из-за нехватки доступных адресов IPv4 (проще говоря, сегодня в мире столько подключенных к сети устройств, что адресов IPv4 не хватает на всех).

Адреса IPv4 – 32-битные. Каждый байт, или 8-битовый сегмент адреса отделяется точкой и выражается числом в диапазоне 0-255. Несмотря на то, что эти числа обычно выражаются десятичным числом (чтобы упростить их восприятие), каждый сегмент называют октетом, чтобы выразить тот факт, что он представляет собой 8 бит.

Типичный адрес IPv4 выглядит примерно так:

Самым низким значением в октете является 0, а самым высоким – 255.

Также можно выразить этот адрес в двоичном коде, чтобы лучше понять строение адреса (в примере каждые 4 бита для удобочитаемости заменены пробелом, а точки пунктиром):

1100 0000 — 1010 1000 — 0000 0000 — 0000 0101

Оба приведённые выше формата выражают один и тот же адрес.

Несмотря на некоторые отличия в функциональности IPv4 и IPv6, наиболее заметным их отличием является адресное пространство. IPv6 выражает адреса как 128-битное число. Это означает, что IPv6 имеет в 7,9×1028 раз больше адресов, чем IPv4.

Читайте также:  Среда составляющими элементами которой являются компьютеры компьютерные сети программные продукты

Чтобы выразить этот расширенный диапазон адресов, IPv6 обычно записывается как восемь сегментов из четырех шестнадцатеричных чисел. Шестнадцатеричные числа выражаются числами от 0 до 15, а также числами a-f (для более высоких значений). Типичный адрес IPv6 может выглядеть примерно так:

Этот адрес можно записать в компактном формате. Правила IPv6 позволяют удалять любые ведущие нули из каждого октета и заменять диапазоны обнуленных групп двойным двоеточием (: :).

К примеру, если в IPv6 есть такая группа:

Диапазон IPv6 с несколькими группами нулей:

Сокращение можно применять только один раз для каждого адреса, иначе полный адрес будет невозможно восстановить.

Сегодня всё чаще используется IPv6, но в остальных примерах статьи будут использоваться адреса IPv4, потому что с меньшим адресным пространством проще работать.

Классы и зарезервированные диапазоны IPv4

Обычно IP-адреса состоят из двух компонентов. Первая часть адреса определяет сеть, частью которой является адрес. Вторая часть используется для указания хоста в этой сети.

Граница между первым и вторым компонентом адреса определяется настройками сети.

Адреса IPv4 делятся на пять классов, предназначенных для дифференциации сегментов доступного адресного пространства IPv4. Они определяются первыми четырьмя битами каждого адреса. Вы можете определить, к какому классу принадлежит IP-адрес, просмотрев эти биты.

  1. Класс А: 0—. Если первый бит в адресе – 0, значит, адрес относится к диапазону А (это адреса от 0.0.0.0 до 127.255.255.255).
  2. Класс B: 10–. К этому классу относятся все адреса от 128.0.0.0 до 191.255.255.255. Это адреса, первый бит которых представлен единицей, а второй – нет.
  3. Класс C: 110-. Это адреса от 192.0.0.0 до 223.255.255.255. Их первые два бита представлены единицей, а третий – нет.
  4. Класс D: 1110. Первые три бита этого класса представлены единицей. Это адреса в диапазоне от 224.0.0.0 до 239.255.255.255.
  5. Класс Е: 1111. Это адреса в диапазоне от 224.0.0.0 до 239.255.255.255. Этот класс включает в себя все адреса, которые начинаются с 1111.

Адреса класса D зарезервированы для многоадресных протоколов, которые позволяют отправлять пакет группе нод в одной транзакции. Адреса класса E зарезервированы для будущих или экспериментальных целей и в основном не используются.

Классы А-С по-разному разделяют компонент сети и компонент хоста.

Адреса класса A использовали оставшуюся часть первого октета для представления сети, а остальная часть адреса использовалась для определения хостов. Такой адрес было удобно использовать для определения нескольких сетей с большим количеством хостов.

Адреса класса B использовали первые два октета (остаток от первого и весь второй) для определения сети, а остальные – для определения хостов в каждой сети. Адреса класса C использовали первые три октета для определения сети, а последний октет – для определения хостов в этой сети.

Изначально разделение IP-пространства на классы применялось как решение проблемы быстрого исчерпания адресов IPv4 (вы можете иметь несколько компьютеров с одним и тем же хостом, если они находятся в разных сетях). Сегодня существуют более современные решения.

Читайте также:  Как работать с сетевыми протоколами

Зарезервированные частные диапазоны

Некоторые части пространства IPv4 зарезервированы для конкретных целей.

Один из самых полезных зарезервированных диапазонов – это диапазон кольцевой проверки, определяемый адресами от 127.0.0.0 до 127.255.255.255. Этот диапазон используется каждым хостом для тестирования сети. Обычно он выражается первым адресом в этом диапазоне: 127.0.0.1.

Каждый обычный класс также имеет диапазон, который используется для обозначения адресов частной сети. Например, для класса A это адреса от 10.0.0.0 до 10.255.255.255. Для класса B этот диапазон составляет 172.16.0.0 – 172.31.255.255. Для класса C это диапазон от 192.168.0.0 до 192.168.255.255.

Любой компьютер, не подключенный к Интернету напрямую (т. е. компьютер, который проходит через маршрутизатор или другую систему NAT), может использовать эти адреса по своему усмотрению.

Больше о зарезервированных адресах можно узнать в Википедии.

Сетевые маски и подсети

Подсети – это сети, которые получаются в результате процесса деления сети на более мелкие сетевые разделы. Подсети используются для различных целей и помогают изолировать группы хостов и управлять ними.

Как говорилось выше, каждое адресное пространство делится на сетевую часть и часть хоста. Часть адреса, которую каждый из них занимает, зависит от класса, которому принадлежит адрес.

Например, для адресов класса C первые 3 октета используются для описания сети: в адресе 192.168.0.15 часть 192.168.0 описывает сеть, а 15 – хост.

По умолчанию каждая сеть имеет только одну подсеть, которая содержит все адреса нод.

Сетевая маска – это спецификация количества адресных битов, которые используются для части сети. Маска подсети – это еще одна сетевая маска, используемая для дальнейшего разделения сети.

Каждый бит адреса, который считается значимым для описания сети, должен быть представлен в сетевой маске как 1.

Например, адрес 192.168.0.15 можно выразить в бинарном коде:

1100 0000 — 1010 1000 — 0000 0000 — 0000 1111

Идентификатор сети в адресах класса C – это первые 3 октета, или первые 24 бита. Поскольку эти биты важны и их нужно сохранить, сетевая маска будет выглядеть следующим образом:

1111 1111 — 1111 1111 — 1111 1111 — 0000 0000

В обычном формате IPv4 это будет выглядеть так:

Каждый бит, отмеченный в бинарном представлении сетевой маски нулём, считается идентификатором хоста и может изменяться. Биты, отмеченные единицей, постоянны (хотя в сети или подсети это не всегда так).

Определить сетевую часть адреса можно с помощью поразрядной операции AND между адресом и сетевой маской. Поразрядная операция AND сохраняет сетевую часть адреса и отбрасывает часть хоста. В результате рассматриваемый нами адрес будет выглядеть так:

1100 0000 — 1010 1000 — 0000 0000 — 0000 0000

Его можно выразить как 192.168.0.0. Спецификация хоста является отличием между этим исходным значением и частью хоста. В данном случае это «0000 1111» или 15.

Читайте также:  Основа вычислительные системы и сети

Подсети берут часть пространства хоста адреса и использует его как дополнительную сетевую спецификацию для дальнейшего разделения адресного пространства.

Например, сетевая маска 255.255.255.0 оставляет 254 хоста в сети (0 и 255 использовать нельзя – они зарезервированы). Чтобы разделить это пространство на две подсети, можно использовать один бит части хоста адреса в качестве маски подсети.

Продолжим работать с предыдущим примером. Часть сети:

1100 0000 — 1010 1000 — 0000 0000

Первый бит хоста можно использовать для обозначения подсети. Для этого нужно настроить маску подсети, вместо:

1111 1111 — 1111 1111 — 1111 1111 — 0000 0000

1111 1111 — 1111 1111 — 1111 1111 — 1000 0000

В традиционной нотации IPv4 это будет выглядеть так:

Теперь первый бит последнего октета отмечен как важный для адресации в сети. Это создает две подсети. Первая подсеть будет в диапазоне от 192.168.0.1 до 192.168.0.127. Вторая подсеть содержит хосты 192.168.0.129 до 192.168.0.255. Традиционно сама подсеть не должна использоваться в качестве адреса.

Бесклассовая адресация CIDR

Система CIDR (Classless Inter-Domain Routing) была разработана в качестве альтернативы традиционным подсетям. С помощью CIDR вы можете добавить спецификацию самого IP-адреса в число значимых битов, составляющих часть маршрутизации или сети.

Например, выразить связь IP-адреса 192.168.0.15 с сетевой маской 255.255.255.0 можно с помощью CIDR-нотации 192.168.0.15/24. Это означает, что первые 24 бита указанного IP-адреса считаются значимыми для сетевой маршрутизации.

CIDR можно использовать для обозначения «суперсетей». В этом случае имеется в виду более широкий диапазон адресов, что невозможно при использовании традиционной маски подсети. Например, в сети класса C (в предыдущем примере) объединять адреса из сетей 192.168.0.0 и 192.168.1.0 нельзя, потому что сетевая маска для адресов класса C – 255.255.255.0.

CIDR-нотация позволяет объединить эти блоки, определив этот блок как 192.168.0.0/23. Это значит, что 23 бита используются для части сети.

Таким образом, первая сеть (192.168.0.0) может быть представлена в двоичном коде так:

1100 0000 — 1010 1000 — 0000 0000 — 0000 0000

А вторая сеть (192.168.1.0) – так:

1100 0000 — 1010 1000 — 0000 0001 — 0000 0000

CIDR-адрес значит, что 23 бита используются в адресной части сети. Это эквивалентно сетевой маске 255.255.254.0, или:

1111 1111 — 1111 1111 — 1111 1110 — 0000 0000

Как видите, в этом блоке 24-й бит может быть 0 или 1, и такой адрес все равно подойдёт, так как ля сетевой части важны только первые 23 бита.

В целом, CIDR позволяет контролировать адресацию непрерывных блоков IP-адресов. Это намного удобнее, чем подсеть.

Заключение

Теперь вы знакомы с некоторыми механизмами адресации и основами протокола IP. Понимание сетевых технологий поможет правильно настроить программное обеспечение и его компоненты.

Существует много полезных онлайн-инструментов, которыми вы можете пользоваться при работе с сетями:

Источник

Оцените статью
Adblock
detector