6 Виды и сущность оптимизации сетевых моделей
Расчет параметров сетевого графика проекта позволяет выявить критические работы, определяющие ход выполнения всего комплекса работ, продолжительность его реализации, резервы времени событий и работ и проанализировать, можно ли его использовать в качестве плана выполнения работ. Чаще всего требуется улучшение сетевого графика с учетом сроков выполнения работ и рационального использования материальных, трудовых и денежных ресурсов, т. е. требуется его оптимизация. Рассмотрим некоторые математические модели оптимизационных задач на сетевых графиках.
6.1 Оптимизация проекта по времени. Пусть задан срок выполнения проекта t0, а расчетное tкр > t0. В этом случае оптимизация комплекса работ сводится к сокращению продолжительности критического пути, которое может быть осуществлено либо за счет перераспределения внутренних резервов, либо за счет привлечения дополнительных средств.
Сокращение времени завершения проекта, как правило, связано с привлечением дополнительных средств (количество рабочих, сверхурочное время). Рассмотрим два примера постановки задачи оптимизации проекта по времени с привлечением дополнительных средств.
Задача 1 заключается в определении величины дополнительных вложений хij в отдельные работы проекта с тем, чтобы общий срок его выполнения не превышал заданной величины t0, а суммарный расход дополнительных средств В был минимальным.
Задан сетевой график G = (Е,) выполнения проекта, где Е — множество событий, а — множество работ. Продолжительность каждой работы равна tij. Известно, что вложение дополнительных средств хij в работу (i, j) сокращает время ее выполнения от tij до t‘ij, причем , гдеkij – технологические коэффициенты использования дополнительных средств. Но сокращение продолжительности работы не беспредельно, для каждой работы существует минимально возможное время ее выполнения dij.
Требуется определить количество дополнительных средств xij, которые необходимо вложить в работы (i, j), а также время начала и окончаниявыполнения этих работ, чтобы проект был выполнен в срокt0, а суммарные дополнительные затраты были минимальными.
Математически условия задачи можно записать следующим образом:
; (6.3)
; (6.4)
; (6.5)
; (6.6)
; (6.7)
. (6.8)
Ограничение (6.4) определяет время завершения проекта, оно должно быть не больше заданного tо. Ограничения (6.5) показывают, что продолжительность каждой работы должна быть не менее минимально возможной ее продолжительности. Ограничения-равенства (6.6) показывают зависимость продолжительности каждой работы от вложенных в нее дополнительных средств. Ограничения (6.7) обеспечивают выполнение условий предшествования работ: время начала выполнения каждой работы должно быть не меньше времени окончания непосредственно предшествующих ей работ. Ограничение (6.8) — условие неотрицательности.
Задача 2 заключается в сокращении срока выполнения проекта, насколько это возможно за счет вложения суммы дополнительных средств, не превышающей В. Время выполнения каждой работы должно быть не меньше минимально возможного времени dij. Необходимо определить время начала и окончания каждой работы и величину дополнительных средств хij, которые нужно выделить на ускорение выполнения работы (i,j).
Математическая модель задачи 2 имеет вид:
;(6.9)
; (6.10)
; (6.11)
; (6.12)
. (6.13)
Смысл ограничений (6.10) – (6.13) аналогичен соответствующим ограничениям постановки задачи 1 (6.4) — (6.8). Если в последнее событие сети n входят сразу несколько работ, то необходимо добавить фиктивную работу (n, n+1), время выполнения которой равно нулю . Тогда целевая функция запишется так.
6.2 Оптимизация проекта по стоимости. В общем случае стоимость выполнения работы зависит от ее продолжительности. Продолжительность каждой работы может изменяться между двумя границами dij и Dij, определяемыми техническими или экономическими соображениями. Если Dij — нормальная продолжительность, ей соответствует минимальная стоимость сij выполнения работы (i, j); если dij — минимально возможная (экстренная) продолжительность работы, при этом стоимость работы будет максимальной Cij. Если при планировании проекта для каждой работы будет взята ее нормальная (наибольшая) длительность Dij, то стоимость проекта будет минимальной. Если для каждой работы взять ее ускоренную, минимально возможную продолжительность dij, то получим срочный план. Стоимость выполнения проекта в этом случае будет максимальной.
Зависимость стоимости от продолжительности работы нелинейна, но для упрощения оптимизационных расчетов предполагают, что уменьшение продолжительности работы пропорционально возрастанию ее стоимости. Тогда в расчете на единицу времени дополнительные затраты на сокращение продолжительности работы будут равны
. (6.14)
Рассмотрим оптимизацию комплекса работ по стоимости при фиксированном сроке выполнения.
Предполагается, что все работы выполняются в срочном режиме и исходная стоимость проекта максимальна. Необходимо минимизировать стоимость проекта при фиксированном сроке его завершенияt0 за счет увеличения времени выполнения отдельных работ.
Увеличение продолжительности работы (i, j) по сравнению с минимальным сроком выполнения на () вызовет экономию средств на величинуhij () , a стоимость выполнения работы станет равна
C = Cij — hij ().(6.15)
Если t0 = tкp, то оптимизация осуществляется за счет увеличения продолжительности некритических работ; если tкр t0, — то за счет всех работ комплекса.
Математическая запись задачи:
; (6.16)
; (6.17)
; (6.18)
; (6.19)
; (6.20)
. (6.21)
Здесь 1 — номер исходного события, n — номер завершающего события.
Рассмотрим оптимизацию комплекса работ по стоимости при нефиксированном сроке выполнения.
Пусть задан сетевой график проекта и известны продолжительность каждой работы и стоимость ее выполнения в нормальном (Dij, cij) и срочном (dij, Cij) режиме работы. Если все работы выполняются в нормальном режиме, то критический срок будет наибольшим, а стоимость выполнения — наименьшей. Время выполнения проекта может быть уменьшено путем увеличения стоимости. Необходимо сократить критический срок до некоторого минимально возможного значения при наименьшем возрастании стоимости выполнения проекта.
6.3 Оптимизация проекта по ресурсам. Пусть проект задан сетевым графиком. Для выполнения проекта выделено R единиц ресурса. Каждая работа характеризуется продолжительностью выполнения tij и интенсивностью потребления ресурса rij. Под интенсивностью потребления будем понимать требуемое количество ресурса для выполнения работы (i, j) в единицу времени. Для простоты допустим, что интенсивности постоянные.
Под оптимальным распределением ресурса понимается такое размещение работ во времени, при котором в любой момент времени потребность в ресурсах не превышает имеющегося в наличии количества ресурса, а время выполнения проекта минимально.
Оптимизация сетевой модели по критерию время – число исполнителей
После построения сетевого графика и определения его временных параметров проводят проверку соответствия полученных сроков продолжительности разработки нормативным или директивным срокам. Далее анализируют структуру сетевой модели, выявляя неоднородность напряженности работ проекта.
В настоящее время на практике сетевую модель вначале корректируют по времени, т. е. приводят ее к заданному сроку окончания проекта. Затем приступают к корректировке графика по критерию распределения ресурсов, начиная с трудовых ресурсов.
Минимизация числа исполнителей проекта при сохранении времени его выполнения
- минимизировать количество одновременно занятых исполнителей;
- выровнять потребность в трудовых ресурсах на протяжении всего срока выполнения проекта.
- перемещение работ по оси времени возможно осуществлять только вправо (откладывая их начало);
- работы критического пути трогать нельзя, т. к. это приведет к увеличению срока выполнения всего проекта;
- работы, имеющие свободный резерв времени, можно спокойно перемещать на величину этого резерва;
- перемещение работ, имеющих только полный резерв времени, требует аналогичного сдвига последующих работ;
- передвигаемые работы на линейной диаграмме выделяют, отмечая заметным символом: звездочкой, штрихом, цветом и т.п.
Рис. 1. Пример сетевого графика
Проведем более детальный анализ линейной диаграммы и карты проекта с целью оптимизации трудовых ресурсов: выравнивая потребность в них на протяжении всего проекта и минимизируя количество одновременно занятых исполнителей. График ежедневной потребности ресурса показывает, что минимальное число исполнителей не может быть меньше 6 человек, что определяется их потребностью для работ критического пути. А 15 исполнителей на участке 5-10 дни проекта является явно завышенным и подлежит коррекции в первую очередь.
Рис. 2. Линейная диаграмма и карта проекта до оптимизации
15 исполнителей заняты на работах 2,3; 2,4 и 2,7. Работу 2,3 трогать нельзя, т. к. это работа критического пути. Работа 2,4 имеет только полный резерв, но не имеет свободного резерва времени. Работа 2,7 имеет солидный свободный резерв времени и поэтому наиболее предпочтительна для оптимизации. Используем часть свободного резерва, переместив работу 2,7 (5-15 дни) на 5 дней (ее новый срок 10-20 дни). Тем самым максимально необходимое число исполнителей уменьшилось до 9 человек, т.е. задачу минимизации трудовых ресурсов проекта можно принять завершенной.
Рис. 3. Линейная диаграмма и карта проекта после оптимизации
Далее решим задачу выравнивания потребности в ресурсах, анализируя интервалы времени, связанные с «провалами» карты проекта. С учетом перемещения работы 2,7 падения спроса на исполнителей в середине проекта (16-18 дни) уже не будет, но он останется ближе к концу проекта (29-30 дни). Чтобы сгладить график загрузки, переместим работу 6,7 (19-28 дни), имеющую свободный резерв времени, на 2 дня (новый срок 21-30 дни). Также для целей выравнивания потребности в трудовых ресурсах переместим работу 4,6 (10-18 дни) на 1 день (11-19 дни).
В итоге оптимизации приходим к линейной диаграмме и карте проекта, представленными на рис. 3. Из графика видно улучшение равномерности загрузки исполнителей: новая ежедневная потребность ресурса составляет от 5 до 9 человек в зависимости от этапа выполнения проекта, резких колебаний занятости нет. Длительность выполнения всего проекта при этом осталась неизменной (34 дня), т. е. необходимое условие оптимизации соблюдено. Видеоинструкция