Основные топологии ЛВС
ЛВС представляют собой разновидность сетей, объединяющих группу ПК или связывающих их с более мощным компьютером, выполняющим роль сетевого сервера. Все ПК в локальной сети могут использовать специализированные приложения, хранящиеся на сетевом сервере, и работать с общими устройствами: принтерами, факсами и другой периферией. Каждый ПК в локальной сети называется рабочей станцией, или сетевым узлом, т.е. ЛВС – это совокупность серверов и рабочих станций.
Особое внимание следует обратить на один из типов серверов – файл-сервер, который хранит данные пользователей сети и обеспечивает им доступ к этим данным. Это ПК с большой ОЗУ, большим HDD, и дополнительными накопителями на магнитной ленте (стриммеры). Файл-сервер работает под управлением специальной ОС, которая обеспечивает одновременный доступ пользователей сети к расположенным на нем данным. Файл-сервер выполняет следующие функции: хранение данных, архивирование данных, передачу данных. Для многих задач одного файл-сервера бывает недостаточно, тогда в сеть могут включаться несколько серверов.
Назначение ЛВС – реализовывать НИТ в системах организационно-экономического управления. Широкое применение ЛВС получили при разработке коллективных проектов, сложных программных комплексов. В ВУЗах ЛВС позволяет повысить качество обучения и внедрить современное интеллектуальные технологии обучения.
Среда передачи является общим ресурсом для всех узлов сети. Чтобы получить возможность доступа к этому ресурсу из узла сети, необходимы специальные механизмы – методы доступа, обеспечивающие выполнение совокупности правил, по которым узлы сети получают доступ к ресурсу.
Существуют два метода доступа:
1. Детерминированный, который используется в сетях звездообразной и кольцевой топологии;
2. Недетерминированный – случайный метод доступа, при этом методе возможны одновременные попытки передачи со стороны нескольких узлов, используется при шинной топологии.
Топология ЛВС – это усредненная геометрическая схема соединений узлов сети.
Для ЛВС существуют 3 базовые сетевые топологии:
Любую компьютерную сеть можно рассматривать как совокупность узлов, а узел – это устройство, непосредственно подключенное к передающей среде сети.
Звездообразная топология – базируется на концепции центрального узла, к которому подключаются периферийные устройства. Каждый периферийный узел имеет свою отдельную линию связи с центральным узлом. Вся информация передается через центральный узел, который ретранслирует, переключает и маршрутизирует информационные потоки в сети.
Рис.1. Топология «Звезда»
Достоинства: самая быстродействующая из всех топологий ЛВС; значительно упрощает взаимодействие узлов ЛВС друг с другом, позволяет использовать более простые сетевые адаптеры.
Недостатки: работоспособность ЛВС целиком зависит от центрального узла.
Кольцевая топология предусматривает соединение узлов сети замкнутой кривой – кабелем передающей среды. Выход одного узла сети соединяется со входом другого. Информация передается по кольцу от узла к узлу.
Рис.2. Топология «Кольцо»
Достоинства: Кольцевая топология является идеальной для сетей, занимающих сравнительно небольшое пространство. В ней отсутствует центральный узел, что повышает надежность сети. Ретрансляция информации позволяет использовать в качестве передающей среды – любые типы кабелей.
Недостатки: последовательность обслуживания узлов снижает ее быстродействие, а выход из строя одного из узлов нарушает целостность узла и требует принятия специальных мер для сохранения передачи информации.
Шинная топология – одна из наиболее простых. Для передачи информации используется специальный кабель(коаксиальный). Данные от передающего узла распространяются по шине в обе стороны на все узлы, но принимает сообщение только то, кому оно адресовано.
Рис.3. Топология «Шина»
Достоинства: высокая надежность сети, сеть легко наращивать и конфигурировать, а также адаптировать к различным системам. Сеть шинной топологии устойчива к неисправностям отдельных узлов.
Недостатки: имеют малую протяженность и не позволяют использовать другие типы кабеля в пределах одной сети. В случае повреждения кабеля нарушается работа всей сети.
При создании сети в зависимости от задач, которые она должна будет выполнять, может быть реализована одна из трех базовых топологий: «звезда», «кольцо» и «шина» (табл.1).
Таблица 1. Основные характеристики сетей разной топологии
Характеристики | Топология | ||
«Звезда» | «Кольцо» | «Шина» | |
1. Стоимость расширения | Незначительная | Средняя | Средняя |
2. Присоединение абонентов | Пассивное | Активное | Пассивное |
3. Защита от отказов | Незначительная | Незначительная | Высокая |
4. Размеры системы | Любые | Любые | Ограничены |
5.Защищенность от прослушивания | Хорошая | Хорошая | Незначительная |
6. Стоимость подключения | Незначительная | Незначительная | Высокая |
7.Поведение системы при высоких нагрузках | Хорошее | Удовлетворительное | Плохое |
8. Возможность работы в реальном режиме работы | Очень хорошая | Хорошая | Плохая |
9. Разводка кабеля | Хорошая | Удовлетворительная | Хорошая |
10. Обслуживание | Очень хорошее | Среднее | Среднее |
Вопросы для самоконтроля:
1. Раскройте основные понятия компьютерных сетей, элементы и структуры.
2. Как классифицируются компьютерные сети?
3. По архитектуре вычислительных сетей, какие существуют варианты ее организации?
4. Какие существуют механизмы, обеспечивающие выполнение совокупности правил, по которым узлы сети получают доступ к ресурсу.
5. Опишите три основные топологии сетей, достоинства, недостатки.
6. Перечислите основные характеристики сетей разной топологии.
Топология локальной компьютерной сети
Топологией сети называется физическую или электрическую конфигурацию кабельной системы и соединений сети.
В описании топологии сетей применяются несколько специализированных терминов: • узел сети — компьютер, либо коммутирующее устройство сети; • ветвь сети — путь, соединяющий два смежных узла; • оконечный узел — узел, расположенный в конце только одной ветви; • промежуточный узел — узел, расположенный на концах более чем одной ветви; • смежные узлы — узлы, соединенные, по крайней мере, одним путём, не содержащим никаких других узлов.
Существует всего 5 основных типов топологии сетей:
1. Топология “Общая Шина”. В этом случае подключение и обмен данными производится через общий канал связи, называемый общей шиной: Общая шина является очень распространенной топологией для локальных сетей. Передаваемая информация может распространяться в обе стороны. Применение общей шины снижает стоимость проводки и унифицирует подключение различных модулей. Основными преимуществами такой схемы являются дешевизна и простота разводки кабеля по помещениям. Самый серьезный недостаток общей шины заключается в ее низкой надежности: любой дефект кабеля или какого-нибудь из многочисленных разъемов полностью парализует всю сеть. Другим недостатком общей шины является ее невысокая производительность, так как при таком способе подключения в каждый момент времени только один компьютер может передавать данные в сеть. Поэтому пропускная способность канала связи всегда делится здесь между всеми узлами сети.
2. Топология “Звезда”. В этом случае каждый компьютер подключается отдельным кабелем к общему устройству, называемому концентратором, который находится в центре сети:
В функции концентратора входит направление передаваемой компьютером информации одному или всем остальным компьютерам сети. Главное преимущество этой топологии перед общей шиной — большая надежность. Любые неприятности с кабелем касаются лишь того компьютера, к которому этот кабель присоединен, и только неисправность концентратора может вывести из строя всю сеть. Кроме того, концентратор может играть роль интеллектуального фильтра информации, поступающей от узлов в сеть, и при необходимости блокировать запрещенные администратором передачи. К недостаткам топологии типа звезда относится более высокая стоимость сетевого оборудования из-за необходимости приобретения концентратора. Кроме того, возможности по наращиванию количества узлов в сети ограничиваются количеством портов концентратора. В настоящее время иерархическая звезда является самым распространенным типом топологии связей как в локальных, так и глобальных сетях.
3. Топология “Кольцо”. В сетях с кольцевой топологией данные в сети передаются последовательно от одной станции к другой по кольцу, как правило, в одном направлении:
Если компьютер распознает данные как предназначенные ему, то он копирует их себе во внутренний буфер. В сети с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какой-либо станции не прервался канал связи между остальными станциями. Преимущество данной топологии — простота управления, недостаток — возможность отказа всей сети при сбое в канале между двумя узлами.
4. Ячеистая топология. Для ячеистой топологии характерна схема соединения компьютеров, при которой физические линии связи установлены со всеми рядом стоящими компьютерами:
В сети с ячеистой топологией непосредственно связываются только те компьютеры, между которыми происходит интенсивный обмен данными, а для обмена данными между компьютерами, не соединенными прямыми связями, используются транзитные передачи через промежуточные узлы. Ячеистая топология допускает соединение большого количества компьютеров и характерна, как правило, для глобальных сетей. Достоинства данной топологии в ее устойчивости к отказам и перегрузкам, т.к. имеется несколько способов обойти отдельные узлы.
5. Смешанная топология. В то время как небольшие сети, как правило, имеют типовую топологию — звезда, кольцо или общая шина, для крупных сетей характерно наличие произвольных связей между компьютерами. В таких сетях можно выделить отдельные произвольно подсети, имеющие типовую топологию, поэтому их называют сетями со смешанной топологией.