Понятие узел в сетевой модели базы данных

Структурные элементы базы данных.

Поле элементарная единица логической организации данных, которая соответствует неделимой единице информации — реквизиту. Для описания поля используются следующие характеристики:

  • имя, например: Фамилия, Имя, Отчество, Дата рождения;
  • тип, например: символьный, числовой, календарный;
  • длина, например, 15 байт, причем будет определяться максимально возможным количеством символов;
  • точность (для числовых данных), например, два десятичных знака для отображения дробной части числа.
  • Запись — совокупность логически связанных полей.
  • Экземпляр записи — отдельная реализация записи, содержащая конкретные значения ее полей.
  • Файл (таблица) — совокупность экземпляров записей одной структуры.

Описание логической структуры записи файла базы данных

Описание логической структуры записи файла содержит последовательность расположения полей записи и их основные характеристики.

В следующей таблице приведен пример описания логической структуры записи файла (таблицы) СТУДЕНТ. Структура записи файла СТУДЕНТ линейная, она содержит записи фиксированной длины. Повторяющиеся группы значений полей в записи отсутствуют. Обращение к значению поля производится по его номеру.

Понятия первичного и вторичного ключей в базе данных

В структуре записи файла указываются поля, значения которых являются ключами:

  • первичными (ПК), которые идентифицируют экземпляр записи,
  • и вторичными (ВК), которые выполняют роль поисковых или группировочных признаков (по значению вторичного ключа можно найти несколько записей).

Сетевая модель данных: основные понятия, описание, схема Сетевая модель данных

Сетевая БД-это набор узлов, в которых каждый может быть связан с каждым.( например, схема дорог)

В сетевой структуре при тех же основных понятиях (уровень, узел, связь) каждый элемент может быть связан с любым другим элементом. На рис. 6 изображена сетевая структура базы данных в виде графа.

Рис. 6. Графическое изображение сетевой структуры

Примером сложной сетевой структуры может служить структура базы данных, содержащей сведения о студентах, участвующих в научно-исследовательских работах (НИРС). Возможно участие одного студента в нескольких НИРС, а также участие нескольких студентов в разработке одной НИРС (рис. 7).

Рис. 7. Пример сетевой структуры БД

Иерархическая структура представляет совокупность элементов, связанных между собой по определенным правилам. Объекты, связанные иерархическими отношениями, образуют ориентированный граф (перевернутое дерево), вид которого представлен на рис. 5.

К основным понятиям иерархической структуры относятся:

Узел — это совокупность атрибутов данных, описывающих некоторый объект. На схеме иерархического дерева узлы представляются вершинами графа.

Каждый узел на более низком уровне связан только с одним узлом, находящимся на более высоком уровне.

Читайте также:  Основные аппаратные и программные компоненты вычислительной сети

Иерархическое дерево имеет только одну вершину (корень дерева), не подчиненную никакой другой вершине и находящуюся на самом верхнем (первом) уровне.

Зависимые (подчиненные) узлы находятся на втором, третьем и т.д. уровнях. Количество деревьев в базе данных определяется числом корневых записей.

К каждой записи базы данных существует только один (иерархический) путь от корневой записи. Например, как видно из рис. 5, для записи С4 путь проходит через записи А и ВЗ.

Рис. 5. Графическое изображение иерархической структуры БД

Примером иерархической модели данных может служить структура ВУЗ-ГРУППА-СТУДЕНТ, так как каждый студент учится в определенной (только одной) группе, которая относится к определенному (только одному) институту.

Реляционная модель данных

Понятие реляционный (англ. relation — отношение) связано с разработками известного американского специалиста в области систем баз данных Е. Кодда.

Эти модели характеризуются:

  • простотой структуры данных,
  • удобным для пользователя табличным представлением
  • и возможностью использования формального аппарата алгебры отношений и реляционного исчисления для обработки данных.

Реляционная модель ориентирована на организацию данных в виде двумерных таблиц.

Реляционной таблицей можно представить информацию о студентах, обучающихся в вузе (см. таблицу).

Источник

3.2.2 Сетевая модель данных

Сетевая модель данных — логическая модель данных, являющаяся расширением иерархического подхода, строгая математическая теория, описывающая структурный аспект, аспект целостности и аспект обработки данных в сетевых базах данных.

Разница между иерархической моделью данных и сетевой состоит в том, что в иерархических структурах запись-потомок должна иметь в точности одного предка, а в сетевой структуре данных у потомка может иметься любое число предков.

В сетевой структуре при тех же понятиях уровень, узел, связь, каждый элемент может быть связан с любым другим элементом.

Сетевая модель СУБД во многом подобна иерархической: если в иерархической модели для каждого сегмента записи допускается только один входной сегмент при N выходных, то в сетевой модели для сегментов допускается несколько входных сегментов наряду с возможностью наличия сегментов без входов с точки зрения иерархической структуры.

Графическое изображение структуры связей сегментов такого типа моделей представляет собой сеть. Сегменты данных в сетевых БД могут иметь множественные связи с сегментами старшего уровня. При этом направление и характер связи в сетевых БД не являются столь очевидными, как в случае иерархических БД. Поэтому имена и направление связей должны идентифицироваться при описании БД.

Таким образом, под сетевой БД понимается система, поддерживающая сетевую организацию: любая запись, называемая записью старшего уровня, может содержать данные, которые относятся к набору других записей, называемых записями подчиненного уровня. Возможно обращение ко всем записям в наборе, начиная с записи старшего уровня. Обращение к набору записей реализуется по указателям.

Читайте также:  Комплекс электронных электрических и механических устройств входящих в состав компьютерной сети это

Сетевые БД поддерживают сложные соотношения между типами данных, что делает их пригодными во многих различных приложениях. Однако пользователи таких БД ограничены связями, определенными для них разработчиками БД-приложений. Среди недостатков сетевых СУБД следует особо выделить проблему обеспечения сохранности информации в БД, решению которой уделяется повышенное внимание при проектировании сетевых БД.

Достоинства сетевой модели данных:

1)эффективное использование памяти;

Недостатки сетевой модели данных:

1) сложность доступа к элементам (навигационный принцип доступа);

2) сложно отследить смысл такой модели данных.

Сетевая модель данных изображена на рисунке 3.4.

Рисунок 3.4 – Сетевая модель данных

3.2.3 Реляционная модель данных

Реляционная модель данных — логическая модель данных, прикладная теория, описывающая структурный аспект, аспект целостности и аспект обработки данных в реляционных базах данных. Понятие реляционный связано с разработками известного американского специалиста в области систем баз данных, сотрудника фирмы IBM Е. Кодда, которым впервые был применен термин «реляционная модель данных».

Термин «реляционный» означает, что теория основана на математическом понятии отношение (relation). В качестве неформального синонима термину «отношение» часто встречается слово таблица

В течение долгого времени реляционный подход рассматривался как удобный формальный аппарат анализа баз данных, не имеющий практических перспектив, так как его реализация требовала слишком больших машинных ресурсов. Только с появлением персональных ЭВМ реляционные и близкие к ним системы стали распространяться, практически не оставив места другим моделям.

Эти модели характеризуются простотой структуры данных, удобным для пользователя табличным представлением и возможностью использования формального аппарата алгебры отношений и реляционного исчисления для обработки данных.

Реляционная модель ориентирована на организацию данных в виде двумерных таблиц. Каждая реляционная таблица представляет собой двумерный массив и обладает следующими свойствами:

    • каждый элемент таблицы — один элемент данных; повторяющиеся группы отсутствуют;
    • все столбцы в таблице однородные, т.е. все элементы в столбце имеют одинаковый тип (числовой, символьный и т.д.) и длину;
    • каждый столбец имеет уникальное имя;
    • одинаковые строки в таблице отсутствуют;
    • порядок следования строк и столбцов может быть произвольным.

    Таблица такого рода называется отношением.

    База данных, построенная с помощью отношений, называется реляционной базой данных.

    Отношения представлены в виде таблиц, строки которых соответствуют записям, а столбцы – полям.

    Поле, каждое значение которого однозначно определяет соответствующую запись, называется ключевым. Если записи однозначно определяются значениями нескольких полей, то такая таблица базы данных имеет составной ключ.

    Достоинства реляционной модели:

    1) простота и доступность понимания конечным пользователем — единственной информационной конструкцией является таблица;

    2) при проектировании реляционной БД применяются строгие правила, базирующие на математическом аппарате;

    3) полная независимость данных. При изменении структуры реляционной изменения, которые требуют произвести в прикладных программах, минимальны.

    Недостатки реляционной модели:

    1) относительно низкая скорость доступа и большой объем внешней памяти;

    2) трудность понимания структуры данных из-за появления большого кол-ва таблиц в результате логического проектирования;

    3) далеко не всегда предметную область можно представить в виде совокупности таблиц.

    В последнее время всё большее количество БД основываются на РМ в виду её простоты и удобства, а также большого количества программных продуктов для разработки этой СУБД. И даже недостатки реляционной модели компенсируются ростом быстродействия и ресурсов памяти современных ЭВМ.

    Для курсового проекта была выбрана реляционная модель данных. Для данной предметной области она является оптимальной, поскольку обладает такими свойствами, как удобство реализации, простота. Сетевая модель не подходит из-за сложного доступа к элементам и является довольно громоздкой, что затрудняет отслеживание смысла связей между объектами. В реляционной модели связи легко определимы. В иерархической модели данных отсутствует механизм, поддерживающий связи между элементами различных поддеревьев, что также может затруднить работу.

    Реляционная модель данных представлена на рисунке 3.5. Таблица Аптека содержит название аптеки, № аптеки, адрес, телефон, лицензию. Таблица Изготовитель содержит название изготовителя, телефон, адрес. В таблице Тип хранится информация о названии типа медикамента. Таблица Препараты хранит названия препаратов дату изготовления, рецепт. Таблица Медикамент хранит информацию о названии медикамента и цену. Таблица Владелец хранит Ф.И.О. владельца, дату рождения, страховку. Таблица Поступает хранит информацию о дате поступления медикамента и количестве.

    Рисунок 3.5 – Реляционная модель данных

    Проанализировав типы моделей данных, я пришла к выводам, что удобнее реализовывать базу данных на основе реляционной модели.

    Реляционная модель данных проста и удобна для понимания, в отличии от сетевой, где очень легко запутаться в связях между объектами и не так громоздка, как иерархическая модель.

    Данные в реляционной модели не зависимы и при изменении структуры не требуется переделывать всю базу, как в иерархической и сетевой моделях. Также реляционная модель рассчитана на разнообразные типы запросов, в отличии от иерархической, ориентированной на конкретные запросы.

    В настоящее время для разработки реляционной СУБД существует множество программных продуктов и систем поддержки. Все это делает разработку именно такой модели данных наиболее удобной.

    Источник

Оцените статью
Adblock
detector