Понятие вычислительной сети характеристики сетей

Понятие Локальных вычислительных сетей

Локальная вычислительная сеть (ЛВС) представляет совокупность компьютеров, расположенных на ограниченной территории и объединенных каналами связи для обмена информацией и распределенной обработки данных.

Организация ЛВС позволяет решать следующие задачи:

  • обмен информацией между абонентами сети, что позволяет сократить бумажный документооборот и перейти к электронному документообороту;
  • Поддержка принятия управленческих решений, предоставляющая руководителю и управленческому персоналу организации, достоверную и оперативную информацию, необходимую для оценки ситуации и принятия правильных решений;
  • Организация собственных информационных систем, содержащих автоматизированные банки данных;
  • Коллективное использование ресурсов, таких, как высокоскоростные печатающие устройства, запоминающие устройства большой емкости, мощные средства обработки информации, прикладные программные системы, базы данных, базы знаний.
    • временем реакции на запросы клиентов ЛВС;
    • пропускной способностью, равной количеству данных, передаваемых за единицу времени;
    • задержкой передачи пакета данных устройствами сети.

    2.1 Основные компоненты ЛВС

    ЛВС включает следующие основные компоненты, представленные на рис.5. Рис.5. Основные компоненты локальной вычислительной сети.

    2.1.1 Рабочая станция

    — персональный компьютер, подключенный к сети, через который пользователь получает доступ к ее ресурсам. Рабочая станция сети функционирует как в сетевом, так и в локальном режиме. Она оснащена собственной операционной системой (MS DOS, Windows и т.д.), обеспечивает пользователя всеми необходимыми инструментами для решения прикладных задач.

    2.1.2 Сервер

    — компьютер, подключенный к сети и обеспечивающий ее пользователей определенными услугами. Серверы могут осуществлять хранение данных, управление базами данных, удаленную обработку заданий, печать заданий и ряд других функций, потребность в которых может возникнуть у пользователей сети. Сервер — источник ресурсов сети. Выделяют следующие виды серверов представленные в таблице 1. Таблица 1. Особое внимание следует уделить одному из типов серверов — файловому серверу (File Server). В распространенной терминологии для него принято сокращенное название- файл-сервер. Файл-сервер хранит данные пользователей сети и обеспечивает им доступ к этим данным. Это компьютер с большой емкостью оперативной памяти, жесткими дисками большой емкости и дополнительными накопителями на магнитной ленте (стриммерами). Он работает под управлением специальной операционной системы, которая обеспечивает одновременный доступ пользователей сети к расположенным на нем данным, Файл-сервер выполняет следующие функции: хранение данных, архивирование данных, синхронизацию изменений данных различными пользователями, передачу данных. Для многих задач использование одного файл-сервера оказывается недостаточным. Тогда в сеть могут включаться несколько серверов. Возможно также применение в качестве файл-серверов мини-ЭВМ.

    2.1.3 Сетевой адаптер (сетевая карта)

      • Прием и передача данных;
      • Буферизация;
      • Формирование пакета данных;
      • Доступ к каналу связи;
      • Идентификация адреса;
      • Кодирование и декодирование данных;
      • Передача и прием импульсов.

      2.1.4 Повторители и концентраторы

      Основная функция повторителя – повторение сигналов, поступающих на его порт. Повторитель улучшает электрические характеристики сигналов и их синхронность, и за счет этого появляется возможность увеличивать общую длину кабеля между самыми удаленными в сети узлами. Многопортовый повторитель часто называют концентратором или хабом, что отражает тот факт, что данное устройство реализует не только функцию повторения сигналов, но и концентрирует в одном центральном устройстве функции объединения компьютеров в сеть. 2.1.5. Мосты и коммутаторы делят общую среду передачи данных на логические сегменты. Логический сегмент образуется путем объединения нескольких физических сегментов (отрезков кабеля) с помощью одного или нескольких концентраторов. Каждый логический сегмент подключается к отдельному порту моста или коммутатора. При поступлении кадра на какой-либо из портов мост или коммутатор повторяет этот кадр, но не на всех портах, как это делает концентратор, а только на том порту, к которому подключен сегмент, содержащий компьютер-адресат. Основное отличие мостов и коммутаторов состоит в том, что мост обрабатывает кадры последовательно (один за другим), а коммутатор — параллельно (одновременно между всеми парами своих портов). 2.1.6. Маршрутизаторы обмениваются информацией об изменениях структуры сетей, трафике и их состоянии. Благодаря этому выбирается оптимальный маршрут следования блока данных в разных сетях от абонентской системы-отправителя к системе-получателю. 2.1.7. Шлюз является наиболее сложнойретрансляционной системой, обеспечивающей взаимодействие сетей с различными наборами протоколов всех семиуровней модели открытых систем. Шлюзы оперируют на верхних уровнях модели OSI (сеансовом, представительском и прикладном) и представляют наиболее развитый метод подсоединения сетевых сегментов и компьютерных сетей. Необходимость в сетевых шлюзах возникает при объединении двух систем, имеющих различную архитектуру, т.к. в этом случае требуется полностью переводить весь поток данных, проходящих между двумя системами. В качестве шлюза обычно используется выделенный компьютер, на котором запущено программное обеспечение шлюза и производятся преобразования, позволяющие взаимодействовать нескольким системам в сети. 2.1.8. Каналы связи позволяют быстро и надежно передавать информацию между различными устройствами локальной вычислительной сети. 2.1.9. Сетевая операционная система составляет основу любой вычислительной сети. Каждый компьютер в сети автономен, поэтому под сетевой операционной системой в широком смысле понимается совокупность операционных систем отдельных компьютеров, взаимодействующих с целью обмена сообщениями и разделения ресурсов по единым правилам – протоколам. В узком смысле сетевая ОС – это операционная система отдельного компьютера, обеспечивающая ему возможность работать в сети. Рис. 7.1 Структура сетевой ОС В соответствии со структурой, приведенной на рис. 7.1, в сетевой операционной системе отдельной машины можно выделить несколько частей. 1. Средства управления локальными ресурсами компьютера: функции распределения оперативной памяти между процессами, планирования и диспетчеризации процессов, управления процессорами, управления периферийными устройствами и другие функции управления ресурсами локальных ОС. 2. Средства предоставления собственных ресурсов и услуг в общее пользование – серверная часть ОС (сервер). Эти средства обеспечивают, например, блокировку файлов и записей, ведение справочников имен сетевых ресурсов; обработку запросов удаленного доступа к собственной файловой системе и базе данных; управление очередями запросов удаленных пользователей к своим периферийным устройствам. 3. Средства запроса доступа к удаленным ресурсам и услугам – клиентская часть ОС (редиректор). Эта часть выполняет распознавание и перенаправление в сеть запросов к удаленным ресурсам от приложений и пользователей. Клиентская часть также осуществляет прием ответов от серверов и преобразование их в локальный формат, так что для приложения выполнение локальных и удаленных запросов неразличимо. 4. Коммуникационные средства ОС, с помощью которых происходит обмен сообщениями в сети. Эта часть обеспечивает адресацию и буферизацию сообщений, выбор маршрута передачи сообщения по сети, надежность передачи и т.п., т. е. является средством транспортировки сообщений.

      Источник

      Понятие, виды и характеристики вычислительных сетей

      Вычислительная сеть (информационно-вычислительная сеть) – это совокупность узлов, соединенных с помощью каналов связи в единую систему (рис. 11.1).

      Рис. 11.1. Структура вычислительной сети

      Узел – это любое устройство, непосредственно подключенное к передающей среде сети. Узлами могут быть не только ЭВМ, но и сетевые периферийные устройства, например, принтеры.

      Каждый узел в сети имеет минимум два адреса: физический, используемый оборудованием, и логический, используемый пользователями и приложениями.

      Узлы обмениваются сообщениями. Здесь сообщение – это целостная последовательность данных, передаваемых по сети.

      Отдельные части сети называются сегментами.

      Передающая среда сети (канал связи) определяет, как будут передаваться сообщения по сети. Примерами передающих сред являются кабельные, радио-, спутниковые каналы.

      Вычислительные сети имеют следующие характеристики.

      1. Производительность – это среднее количество запросов пользователей сети, исполняемых за единицу времени. Производительность зависит от времени реакции системы на запрос пользователя. Это время складывается из трех составляющих:

      — времени передачи запроса от пользователя к узлу сети, ответственному за его исполнение;

      — времени выполнения запроса в этом узле;

      — времени передачи ответа на запрос пользователю.

      2. Пропускная способность – это объем данных, передаваемых через сеть ее сегмент за единицу времени (трафик).

      3. Надежность – это среднее время наработки на отказ.

      4. Безопасность – это способность сети обеспечить защиту информации от несанкционированного доступа.

      5. Масштабируемость – это возможность расширения сети без заметного снижения ее производительности.

      6. Универсальность сети – это возможность подключения к сети разнообразного технического оборудования и программного обеспечения от разных производителей.

      Вычислительные сети используются в следующих целях:

      1) предоставление доступа к программам, оборудованию и данным для любого пользователя сети; эта цель называется совместным использованием ресурсов;

      2) обеспечение высокой надежности хранения источников информации; хранение данных в нескольких местах позволяет избежать их потерю, в случае их удаления в одном из мест;

      3) обработка данных, хранящихся в сети;

      4) передача данных между удаленными друг от друга пользователями.

      По виду технологии передачи вычислительные сети делятся на следующие типы:

      — широковещательные сети обладают общим каналом связи, совместно используемым всеми узлами; сообщения передаются всем узлам; примером широковещательной сети является телевидение;

      — последовательные сети, в которых сообщению необходимо пройти несколько узлов, чтобы добраться до узла назначения; сообщение передается только одному узлу; примером такой технологии передачи является электронная почта.

      Небольшие сети обычно используют широковещательную передачу, тогда как в крупных сетях применяется передача от узла к узлу.

      По размеру сети можно подразделить на следующие типы:

      — локальные сети размещаются в одном здании или на территории одного предприятия; примером локальной сети является локальная сеть в учебном классе;

      — региональные сети объединяют несколько предприятий или город; примером сетей такого типа является сеть кабельного телевидения;

      — глобальные сети охватывают значительную территорию, часто целую страну или континент и представляют собой объединение сетей меньшего размера; примером глобальной сети является сеть Интернет.

      По принципу построения сети делятся на следующие типы:

      — одноранговые сети объединяют равноправные узлы; такие сети объединяют не более 10 узлов;

      — сети на основе выделенного сервера имеют специальный узел – вычислительную машину (сервер), предназначенную для хранения основных данных сети и предоставления этих данных узлам (клиентам) по запросу.

      Источник

      Читайте также:  Пассивные устройства компьютерной сети
Оцените статью
Adblock
detector