Построение физической топологии сети

7.1 Физические топологии

Физическая топология описывает реально использующиеся способы организации физических соединений различного сетевого оборудования (использующиеся кабели, разъемы и способы подключения сетевого оборудования). Физические топологии различаются по стоимости и функциональности.

7.1.1 Физическая шина (PhysicalBus)

Самая простая форма топологии физической шины представляет собой один основной кабель, оконцованный с обеих сторон специальными типами разъемов – терминаторами. При создании такой сети основной кабель прокладывают последовательно от одного сетевого устройства к другому. Сами устройства подключаются к основному кабелю с использованием подводящих кабелей и T-образных разъемов. Пример такой топологии приведен на рисунке.

Рисунок 12 – Топология физической шины

Более сложной формой топологии физической шины является «распределенная шина» (чаще называется «древовидная топология»). В такой топологии основной кабель, начинаясь из одной точки, называемой «корнем» (root), разветвляется в различных направлениях определяемых реальным физическим местоположением сетевых устройств. В отличие от описанной выше топологии, в топологии «распределенная шина» основной кабель имеет более двух окончаний. Разветвление кабеля осуществляется с использованием специальных разъемов. Пример такой топологии приведен на рисунке.

Рисунок 13 – Топология распределенной шины

7.1.2 Физическая звезда (PhysicalStar)

Самая простая форма топологии «физическая звезда» состоит из множества кабелей (по одному на каждое подключаемое сетевое устройство) подключенных к одному, центральному устройству. Это центральное устройство называют концентратором. Примером топологии физической звезды является технология Ethernet 10Base-T или Ethernet 100Base-T. В таких сетях каждое сетевое устройство подключается к концентратору с использованием кабеля типа «витая пара». В случае использования простой топологии «физическая звезда» реальные пути движения сигналов могут не соответствовать форме звезды. Единственная характеристика, описываемая топологией «физическая звезда» – это способ физического соединения сетевых устройств. Пример самой простой топологии «физическая звезда» приведен на рисунке.

Рисунок 14 – Топология физической звезды

В топологии «распределенная звезда» способы соединения устройств могут быть существенно сложнее. В такой топологии центральные устройства (концентраторы) дополнительно соединяются между собой.

Рисунок 15 – Топология распределенной звезды

7.1.3 Физическое кольцо с подключением типа «звезда» (PhysicalStar-WiredRing)

В этой топологии все сетевые устройства подключаются к центральному концентратору так же, как это происходит при использовании топологии «физическая звезда». Но каждый из концентраторов внутри себя организовывает физические соединения, обеспечивающие построение единого физического кольца. При использовании нескольких концентраторов, кольцо в каждом из концентраторов размыкается, а сами концентраторы подключаются друг к другу с использованием двух кабелей, организуя физическое замыкание кольца.

Читайте также:  Доклад на тему передача информации в компьютерных сетях

В этой топологии все концентраторы являются «интеллектуальными» устройствами. При возникновении разрыва физического кольца в любой точке сети концентратор автоматически обнаруживает разрыв и восстанавливает кольцо путем замыкания внутри себя соответствующих портов. На рисунке показан пример такого восстановления кольца (концентратор А).

Рисунок 16 – Топология физического кольца с подключением типа «звезда»

В настоящее время наибольшей популярностью пользуется звездообразная топология, поскольку она обеспечивает самый простой способ подключения новых устройств в сеть. В большинстве случаев включение нового устройства в сеть заключается лишь в прокладке отрезка кабеля, соединяющего подключаемое сетевое устройство с концентратором.

Источник

Построение физической модели сети предприятия.

    1. Схема организации связи.

Корпоративная сеть строится на технологии Ethernet. Ethernet — пакетная технология передачи данных преимущественно локальных компьютерных сетей. Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат кадров и протоколы управления доступом к среде — на канальном уровне модели OSI. Ethernet в основном описывается стандартами IEEE группы 802.3. Ethernet стал самой распространённой технологией ЛВС в середине 1990-х годов, вытеснив такие устаревшие технологии, как Arcnet и Token ring В стандарте первых версий (Ethernet v1.0 и Ethernet v2.0) указано, что в качестве передающей среды используется коаксиальный кабель, в дальнейшем появилась возможность использовать витую пару и оптический кабель. Преимущества использования витой пары по сравнению с коаксиальным кабелем:

  • возможность работы в дуплексном режиме;
  • низкая стоимость кабеля «витой пары»;
  • более высокая надёжность сетей при неисправности в кабеле (соединение точка-точка: обрыв кабеля лишает связи два узла. В коаксиале используется топология «шина», обрыв кабеля лишает связи весь сегмент);
  • минимально допустимый радиус изгиба меньше;
  • большая помехоустойчивость из-за использования дифференциального сигнала;
  • возможность питания по кабелю маломощных узлов, например IP-телефонов (стандарт Power over Ethernet, POE);
  • гальваническая развязка трансформаторного типа. При использовании коаксиального кабеля в российских условиях, где, как правило, отсутствует заземление компьютеров, применение коаксиального кабеля часто сопровождалось пробоем сетевых карт и иногда даже полным «выгоранием» системного блока.
Читайте также:  Информационная безопасность в вычислительных сетях и информационных системах

Причиной перехода на оптический кабель была необходимость увеличить длину сегмента без повторителей. Метод управления доступом (для сети на коаксиальном кабеле) — множественный доступ с контролем несущей и обнаружением коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection), скорость передачи данных 10 Мбит/с, размер пакета от 64 до 1518 байт, описаны методы кодирования данных. Режим работы полудуплексный, то есть узел не может одновременно передавать и принимать информацию. Количество узлов в одном разделяемом сегменте сети ограничено предельным значением в 1024 рабочих станции (спецификации физического уровня могут устанавливать более жёсткие ограничения, например, к сегменту тонкого коаксиала может подключаться не более 30 рабочих станций, а к сегменту толстого коаксиала — не более 100). Однако сеть, построенная на одном разделяемом сегменте, становится неэффективной задолго до достижения предельного значения количества узлов, в основном по причине полудуплексного режима работы. В 1995 году принят стандарт IEEE 802.3u Fast Ethernet со скоростью 100 Мбит/с и появилась возможность работы в режиме полный дуплекс. В 1997 году был принят стандарт IEEE 802.3z Gigabit Ethernet со скоростью 1000 Мбит/с для передачи по оптическому волокну и ещё через два года для передачи по витой паре. Топология сети: Звезда — базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно коммутатор), образуя физический сегмент сети. Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило, «дерево»). Весь обмен информацией идет исключительно через центральный компьютер, на который таким способом возлагается очень большая нагрузка, поэтому ничем другим, кроме сети, он заниматься не может. Как правило, именно центральный компьютер является самым мощным, и именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, потому что управление полностью централизовано. Рисунок 1.

Источник

Архитектура компьютерной сети. Физическая и логическая топологии.

Физическая топология относится к физической структуре сети (геометрическое расположение узлов).

Читайте также:  Для объединения компьютеров могут использоваться

Логическая топология сети характеризует способ прохождения пакетов данных по сети, а также метод организации связи в сети, обеспечивающий одновременную работу «на передачу» только одной сетевой станции (узла), т.к. все узлы используют только одну и ту же линию связи.

Физическая топология.

1. Физическая шинная топология. В этой топологии кабель идет от компьютера к компьютеру, связывая их в цепочке. Все компьютеры в сети связаны одним общим кабелем, как правило, коаксиальным.

2. Звездообразная физическая топология. Сети, построенные на основе этой топологии, подключаются к концентратору, которая обеспечивает связь между ними. Каждая рабочая станция имеет отдельное соединение с концентратором. В этой топологии используется больше кабеля, кабеля, чем в шинной. Каждому элементу сети требуется проложить свой собственный кабель.

3. Распределенная физическая звездообразная топология называется звезда – шина. Здесь концентраторы сети последовательно подключены друг другу.

4. Кольцевая топология. Эта сеть, в которой все узлы объединяются в кольцо выполненные в виде пары кабеля проложенных между каждым узлом.

Логическая топология.

1. Логическая шинная топология (пример Ethernet). Сеть с этой топологией работает следующим образом: каждый раз, когда у какого-либо узла сети оказываются данные для другого узла, то первый узел производит «оповещение» всей сети. Все остальные узлы «слушают» сеть и проверяют, предназначены эти данные для них или нет. Если предназначены, то они «оставляют» их себе; если нет, то игнорируют.

2. Логическая кольцевая топология. Сеть, построенная по этой топологией должна функционировать следующим образом: каждая станция должна повторять то, что она «услышит» от предыдущей. Когда пакет данных возвращается их отправителю, передачи прекращаются. Основой этой топологии является специальный формат пакета данных, который называется маркером. Использование маркера позволяет устранить конфликты, в пакетах гарантируя то, что в данный момент времени только одна станция сможет посылать данные через сеть. Такой метод называется эстафетой. Суть метода состоит в том, что только один узел, который контролирует эстафету, может передавать информацию через сеть. Из-за важности маркера один из компьютеров сети специально выделяется для управления им. Этот компьютер называется задатчиком маркера. Он определяет потерю маркеров, отслеживает передачу кадров и создает новый маркер, если это необходимо.

Источник

Оцените статью
Adblock
detector