Построение и оптимизация сетевой модели

1.3.5. Пример построения и расчета сетевой модели

Исходные данные варианта лабораторной работы включают название и продолжительность каждой работы (табл. 1.1), а также описание упорядочения работ.

  1. Работы C, I, Gявляются исходными работами проекта, которые могут выполняться одновременно.
  2. Работы E иAследуют за работойC.
  3. Работа Hследует за работойI.
  4. Работы D иJследуют за работойG.
  5. Работа Bследует за работойE.
  6. Работа Kследует за работамиAиD, но не может начаться прежде, чем не завершится работаH.
  7. Работа Fследует за работойJ.

На рис.1.4 представлена сетевая модель, соответствующая данному упорядочению работ. Каждому событию присвоен номер, что позволяет в дальнейшем использовать не названия работ, а их коды (см. табл. 1.2). Численные значения временных параметров событий сети вписаны в соответствующие секторы вершин сетевого графика, а временные параметры работ сети представлены в табл. 1.3. Таблица 1.2 Описание сетевой модели с помощью кодирования работ

Номера событий Код работы Продолжительность
начального конечного работы
1 2 (1,2) 4
1 3 (1,3) 3
1 4 (1,4) 5
2 5 (2,5) 7
2 6 (2,6) 10
3 6 (3,6) 8
4 6 (4,6) 12
4 7 (4,7) 9
5 8 (5,8) 8
6 8 (6,8) 10
7 8 (7,8) 11

Рис.1.4. Сетевая модель Таблица 1.3 Временные параметры работ

1,2 4 0 4 3 7 3 0
1,3 3 0 3 6 9 6 0
1,4 5 0 5 0 5 0 0
2,5 7 4 11 12 19 8 0
2,6 10 4 14 7 17 3 3
3,6 8 3 11 9 17 6 6
4,6 12 5 17 5 17 0 0
4,7 9 5 14 7 16 2 0
5,8 8 11 19 19 27 8 8
6,8 10 17 27 17 27 0 0
7,8 11 14 25 16 27 2 2

1.4. Контрольные вопросы

1.4.1. Зачетный минимум

  1. Определение события, виды событий, практические примеры событий, обозначение событий на графике, временные параметры событий.
  2. Определение работы, классификация работ с приведением соответствующих практических примеров, обозначение работ на графике, временные параметры работ.
  3. Правила построения сетевых графиков.
  4. Определение пути в сетевом графике, виды путей, важность определения критического пути.
  5. Умение вычислять временные параметры событий и работ.

1.4.2. Дополнительные вопросы

  1. Почему при расчете раннего срока свершения события iвыбираютмаксимальнуюиз сумм ?
  2. Почему при расчете позднего срока свершения события iвыбираютминимальнуюиз разностей ?
  3. Какова взаимосвязь полного и свободного резервов работы?
  4. Как можно найти критических путь в сетевой модели, без непосредственного суммирования длительностей работ?

Часть 2. ОПТИМИЗАЦИЯ СЕТЕВЫХ МОДЕЛЕЙ ПО КРИТЕРИЮ «МИНИМУМ ИСПОЛНИТЕЛЕЙ» 2.1. ЦЕЛЬ РАБОТЫ Знакомство с методикой и приобретение навыков проведения оптимизации сетевых моделей по критерию «Минимум исполнителей». 2.2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ 1. Согласно номеру своего варианта получите данные о количество исполнителей, занятых на каждой работе сетевой модели, и ограничение по численности Nодновременно занятых в работе исполнителей. 2. Постройте в отчете графики привязки и загрузки, используя нормальные длительности работ сети — (см. п.2.3.1), и покажите их преподавателю. 3. Проверьте правильность построения графиков привязки и загрузки с помощью компьютера, в случае необходимости выявите и устраните ошибки. 4. Используя компьютерную программу, проведите уменьшение численности исполнителей, одновременно занятых на работах сети, до требуемого уровня N. 5. Отчет по лабораторной работе должен содержать:

  • номер варианта;
  • исходные данные варианта;
  • графики привязки и загрузки до проведения оптимизации загрузки;
  • графики привязки и загрузки после проведения оптимизации загрузки (возможно использование пунктирных линий на первоначально построенных графиках для отображение изменений в привязке работ и загрузке сети, вызванных сдвигами работ);
  • коды работ, сдвинутых в процессе оптимизации, и время их сдвига.
Читайте также:  Какие могут быть компьютерные сети по способу подключения

Источник

Оптимизация сетевых моделей

После того как сетевой график построен и рассчитаны его основные показатели, приступают к его оптимизации, т.е. к последовательной корректировке сети для достижения наиболее эффективных результатов и заданных параметров по времени и ресурсам. Для этого проводится анализ сетевых графиков.

В итоге оптимизация сетевых графиков заключается в улучшении процессов планирования, организации и управления комплексом работ с целью сокращения расходования экономических ресурсов и повышения финансовых результатов при заданных плановых ограничениях.

В практике оптимизация сетевых графиков подразделяется на частную и комплексную.

Основными видами частной оптимизации являются два экономических подхода:

1) минимизация времени выполнения комплекса планируемых работ при заданной стоимости проекта;

2) минимизация стоимости всего комплекса работ при заданном времени выполнения проекта.

Комплексная оптимизация сетевых моделей состоит в нахождении наилучших соотношений показателей затрат экономических ресурсов и сроков выполнения планируемых работ применительно к определенным производственным условиям и ограничениям. В рыночных отношениях в качестве критерия оптимальности сетевых систем планирования могут быть выбраны такие важные экономические показатели, как максимальная прибыль (финансовый результат) от производства товаров и услуг, минимальный расход ресурсов на реализацию планов, максимальная производительность труда исполнителей, минимальные затраты рабочего времени на достижение конечной цели и т.д.

Рассмотрим основные подходы и методы к оптимизации сетевых графиков.

Оптимизация сетевого графика по времени заключается в сокращении его критического пути в соответствии с директивными сроками окончания комплекса работ. Это может быть достигнуто за счет следующих мероприятий:

· сокращения времени выполнения критических работ за счет переброски ресурсов с некритических работ, располагающих значительным резервом времени. Этот шаг основан на анализе временных показателей графика и не требует больших затрат материальных и финансовых ресурсов. Анализ сети проводится с целью выравнивания продолжительности наиболее напряженных путей. Рассчитываются коэффициенты напряженности любого полного пути (отношение его длительности к критическому пути), которые позволяют классифицировать работы по зонам: критическую (Кн>0,8), подкритическую (0,6£ Кн £0,8), резервную (Кн<0,6); чем ближе коэффициент к единице, тем сложнее выполнить работу;

Читайте также:  Эталонная сетевая модель osi прикладной уровень транспортный уровень

· изменения топологии сети в результате внедрения новой технологии производства работ, позволяющей находить новые последовательности и взаимосвязи работ;

· расчленения длительных работ на отдельные части и замены последовательных работ параллельными.

После сокращения критического пути за счет проведения тех или иных мероприятий заново пересчитываются параметры сетевого графика, чтобы выявить достаточность принятых мер и проверить, не появились ли новые критические пути.

Оптимизация сетевых моделей за счет минимизации расходования материальных ресурсов сводится к определению оптимальных норм расхода ресурсов на единицу выполненной работы или распределению имеющихся ресурсов на весь комплекс работ. Одним из возможных способов сокращения критического пути может служить перераспределение различных ресурсов с ненапряженных путей на выполнение критических работ. При этом следует также иметь в виду тот факт, что сверхплановое насыщение критических работ ресурсами не беспредельно, так как существуют определенные ограничения в ресурсах на каждом предприятии.

Важнейшей комплексной проблемой оптимизации сетевых графиков является минимизация стоимости, которая характеризует наименьшие суммарные издержки на осуществление всего комплекса запланированных работ. При этом методе исходят из того экономического предположения, что величина издержек на выполнение той или иной работы находится при прочих равных условиях в обратной зависимости от затрат рабочего времени на ее выполнение. Если все запланированные работы будут выполняться с рассчитанной в сетевом графике точностью, то общая стоимость разработанного плана-проекта будет минимальной. С ускорением работ затраты возрастают, а с их замедлением — снижаются. Причем при минимальной продолжительности работ их стоимость становится максимальной и, наоборот, при максимальной длительности затраты будут минимальными.

5.6. Комплексное планирование производства и материально-технического снабжения на основе сетевого планирования

Комплексное планирование производства и его материально-технического снабжения на основе сетевых моделей обеспечивает координацию всех планируемых процессов, позволяет рассматривать их в динамике и вычислять календарные нормативы.

Территориальная разобщенность поставщиков и потребителей, периодичность производства необходимых материалов, возможность нарушения нормальных сроков изготовления материалов и транспортного процесса, а также другие факторы вызывают необходимость опережения процесса материально-технического снабжения по отношению к производственным процессам.

При комплексном сетевом планировании производства и его снабжения поставка материалов, конструкций, оборудования и других ресурсов, так называемые «внешние работы», отражается в сетевом графике сплошными стрелками, на которых обозначено время материального опережения и которые выходят из двойных кружков (рис. 5.6).

Читайте также:  Компьютерные сети масштабируемость это

Рис. 5.6. Пример изображения «внешних работ»

Материальное опережение на сетевых графиках выражается в относительных показателях (дни, часы), которые характеризуют время пребывания материальных ресурсов (его ожидание использования при выполнении работ) в виде производственных запасов. Материальное опережение показывает время, необходимое для раннего завоза материалов на склады предприятий или на строительные площадки по отношению к срокам их потребления. Материальное опережение (М0) вычисляется по формуле (5.1).

где Зт, З, Зп – текущий, страховой и подготовительный запасы в относительном выражении.

Для расчета сроков начала подготовки материалов на базах снабжения необходимо знать время, затрачиваемое на подсортировку, комплектование и транспортировку материалов и на оформление документов, которое можно рассчитать по формуле (5.2).

где tп, tу, tт,tо.д — соответственно время, затраченное на подготовку, комплектование, транспортировку и оформление документов.

Сроки завоза на склады снабжения предприятий с единичным производством или на строительные площадки определяется по формуле (5.3).

где tзав(ij) – наиболее поздний допустимый срок завоза материалов для выполнения работы (ij); tр(ij) – наиболее ранний срок начала работы (ij); М0 — нормативная величина материального опережения.

Самый поздний срок начала подготовки материалов на базах снабжения можно определить по формуле (5.4).

где M0 – продолжительность работ по выполнению поставки с баз снабжения на склад предприятия и на строительную площадку.

При серийном машиностроительном производстве материалы завозятся на склады предприятий партиями. При этом размер партии значительно выше потребности разового запуска материала в производство. В данных условиях сроки завоза материалов на склады предприятий tзав(ij) можно рассчитать по формуле (5.5).

где tр(ij) самый ранний срок начала работ (ij); Оk – остаток k- го материала на складах предприятия к началу производства серии машин в натуральных единицах измерения; n – количество поступивших партий k- го материала до момента завоза очередной (n +1)-й партии; Пk – величина партии поставки k- го материала в натуральных единицах измерения; Pk(ij) потребность в k- ом материале для выполнения (ij) работы в натуральных единицах измерения; М0 – постоянная часть материального опережения.

На основании данных формул увязываются сроки завоза материалов и сроки подготовки материалов на базах снабжения с календарными сроками выполнения работ по сетевому графику. Это дает возможность планировать работу складского хозяйства снабженческо-сбытовых организаций и работу транспорта.

ТЕМА 6. ПЛАНИРОВАНИЕ ПРОИЗВОДСТВА

Источник

Оцените статью
Adblock
detector