Протоколы и технологии локальных сетей
В локальных сетях основная роль в организации взаимодействия узлов принадлежит протоколу канального уровня, который ориентирован на вполне определенную топологию ЛКС. Так, самый популярный протокол этого уровня — Ethernet — рассчитан на топологию «общая шина», когда все узлы сети параллельно подключаются к общей для них шине, а протокол Token Ring — на топологию «звезда». При этом применяются простые структуры кабельных соединений между РС сети, а для упрощения и удешевления аппаратных и программных решений реализовано совместное использование кабелей всеми РС в режиме разделения времени. Такие простые решения, характерные для разработчиков первых ЛКС во второй половине 70-х годов ХХ века, наряду с положительными имели и отрицательные последствия, главные из которых — ограничения по производительности и надежности.
Поскольку в ЛКС с простейшей топологией (общая шина, кольцо, звезда) имеется только один путь передачи информации — моноканал, производительность сети ограничивается пропускной способностью этого пути, а надежность сети — надежностью пути. Поэтому по мере развития и расширения сфер применения локальных сетей с помощью специ-альных коммуникационных устройств (мостов, коммутаторов, маршрутизаторов) эти ограничения постепенно снимались. Базовые конфигурации ЛКС (шина, кольцо) превратились в элементарные звенья, из которых формируются более сложные структуры локальных сетей, имеющие параллельные и резервные пути между узлами.
Однако внутри базовых структур локальных сетей продолжают работать все те же протоколы Ethernet и Token Ring. Объединение этих структур (сегментов) в общую, более сложную локальную сеть осуществляется с помощью дополнительного оборудования, а взаимодействие РС такой сети — с помощью других протоколов.
В развитии локальных сетей, кроме отмеченных, наметились и другие тенденции:
- отказ от разделяемых сред передачи данных и переход к использованию активных коммутаторов, к которым РС сети присоединяются индивидуальными линиями связи;
- появление нового режима работы в ЛКС при использовании коммутаторов — полнодуплексного (хотя в базовых структурах локальных сетей РС работают в полудуплексном режиме, т. к. сетевой адаптер станции в каждый момент времени либо передает свои данные, либо принимает другие, но не делает это одновременно). Сегодня каждая технология ЛКС приспособлена для работы как в полудуплексном, так и в полнодуплексном режимах. Стандартизация протоколов ЛКС осуществлена комитетом 802, организованном в 1980 в институте IEEE. Стандарты семейства IEEE 802.Х охватывают только два нижних уровня модели ВОС — физический и канальный. Именно эти уровни отражают специфику локальных сетей, старшие уровни, начиная с сетевого, имеют общие черты для сетей любого класса.
- логической передачи данных (LLC — Logical Link Control);
- управления доступом к среде (МАС — Media Access Control).
- номинальная пропускная способность — 10 Мбит/с;
- максимальное число РС в сети — 1024;
- максимальное расстояние между узлами в сети — 2500 м;
- максимальное число коаксиальных сегментов сети — 5;
- максимальная длина сегмента — от 100 м (для 10Base-T) до 2000 м (для 10Base-F);
- максимальное число повторителей между любыми станциями сети — 4.
- структура физического уровня технологии Fast Ethernet — более сложная, что объясняется использованием трех вариантов кабельных систем: волоконно-оптический кабель, витая пара категории 5 (используются две пары), витая пара категории 3 (используются четыре пары). Отказ от коаксиального кабеля привел к тому, что сети этой технологии всегда имеют иерархическую древовидную структуру;
- диаметр сети сокращен до 200 м, время передачи кадра минимальной длины уменьшено в 10 раз за счет увеличения скорости передачи в 10 раз;
- технология Fast Ethernet может использоваться при создании магистралей локальных сетей большой протяженности совместно с коммутаторами (полудуплексный вариант работы для этой технологии является основным);
Таблица 17.1. Сравнение сетей различных топологий Характеристики Тип технологии FDDI Ethernet Token Ring Пропускная способность Мбит/с 100 10 16 Топология Двойное кольцо Шина, звезда Звезда, кольцо Метод доступа Маркерный, доля от времени оборота маркера CSMA/CD Маркерный, приоритетная система резервирования Среда передачи данных Оптоволокно, неэкранированная витая пара Толстый коаксиал, тонкий коаксиал, витая пара, оптоволокно Экранированная и неэкранированная витая пара, оптоволокно Максимальная длина сети (без мостов) 200 км (100 км на кольцо) 2500 м 4000 м Максимальное расстояние между узлами 2 км 2500 м 100 м Максимальное количество узлов 500 1024 260 - для всех трех спецификаций физического уровня, отличающихся типом применяемого кабеля, форматы кадров отличаются от форматов кадров технологий 10-мегабитного Ethernet;
- признаком свободного состояния передающей среды является не отсутствие сигналов, а передача по ней специального символа в кодированном виде;
- применяется метод кодирования 4В/5В, хорошо себя зарекомендовавший в технологии FDDI. В соответствии с этим методом каждые 4 бита передаваемых данных представляются 5 битами, т.е. из 32 комбинаций 5-битных символов для кодирования исходных 4-битных символов используются только 16 комбинаций, а из ос-тавшихся 16 комбинаций выбираются несколько кодов, которые используются как служебные. Один из служебных кодов постоянно передается в течение пауз между передачей кадров. Если он в линии связи отсутствует, то это свидетельствует об отказе физической связи;
- кодирование и синхронизация сигналов осуществляются с помощью биполярного кода NRZ;
- технология Fast Ethernet рассчитана на применение концентраторов-повторителей для образования связей в сети (то же самое имеет место для всех некоаксиальных вариантов Ethernet).
- на уровне протокола не поддерживаются (так же, как и у его предшественников): качество обслуживания, избыточные связи, тестирование работоспособности узлов и оборудования. Что касается качества обслуживания, то считается, что высокая скорость передачи данных по магистрали и возможность назначения пакетам приоритетов в коммутаторах вполне достаточны для обеспечения качества транспортного обслуживания пользователей сети. Поддержка избыточных связей и тестирование оборудования осуществляются протоколами более высоких уровней;
- сохраняются все форматы кадров Ethernet;
- имеется возможность работы в полудуплексном и полнодуплексном режимах. Первый из них поддерживает метод доступа CSMA/CD, а второй — работу с коммутаторами;
- поддерживаются все основные виды кабелей, как и в предшествующих технологиях этого семейства: волоконно-оптический, коаксиальный, витая пара;
- минимальный размер кадра увеличен с 64 до 512 байт, максимальный диаметр сети тот же — 200 м. Можно передавать несколько кадров подряд, не освобождая среду.
- возможность развертывания сети без прокладки кабеля, что уменьшает стоимость ее создания и расширения;
- Wi-Fi-устройства достаточно широко представлены на рынке, а устройства разных производителей могут взаимодействовать на базовом уровне сервисов;
- для клиентских станций возможно перемещение в пространстве;
- Wi-Fi — это набор глобальных стандартов, поэтому Wi-Fi-оборудование может работать в разных странах по всему миру.
- наличие ограничений в частотном диапазоне в различных странах;
- довольно высокое по сравнению с другими стандартами потребление энергии;
- ограниченный радиус действия (до 100 м);
- возможность наложения сигналов от различных точек доступа, что затрудняет связь клиентов друг с другом;
- недостаточно высокая информационная безопасность. Отметим, что Microsoft Windows полностью поддерживает Wi-Fi посредством драйверов.
Протоколы в лвс
Организация ЛВС базируется на принципе многоуровневого управления процессами, включающими в себя иерархию протоколов и интерфейсов.
Протокол УФК определяет форму представления и порядок передачи данных через физический канал связи, фиксирует начало и конец кадра, который несет в себе данные, формирует и принимает сигнал со скоростью, присущей пропускной способности канала.
Второй уровень (канальный) можно разделить на два подуровня: управление доступом к каналу (УДК) и управление информационным каналом (УИК).
Протокол УДК устанавливает порядок передачи данных через канал, выборку данных.
Протокол УИК обеспечивает достоверность данных, т.е. формируются проверочные коды при передаче данных.
Во многих ЛВС отпадает необходимость в сетевом уровне. К нему прибегают при комплексировании нескольких ЛВС, содержащих моноканалы.
Протокол УП обеспечивает транспортный интерфейс, ликвидирующий различия между потребностями процессов в обмене данными и ограничениями информационного канала, организуемого нижними уровнями управления. Протоколы высоких уровней — УС, УПД, УПП — по своим функциям аналогичны соответствующим протоколам глобальных сетей, т.е. реализуется доступ терминалов к процессам, программ к удаленным файлам, передача файлов, удаленный ввод заданий, обмен графической информацией и др.
2. Организация взаимодействия устройств в сети
В зависимости от способа организации обработки данных и взаимодействия пользователей, который поддерживается конкретной сетевой операционной системой, выделяют два типа информационных систем:
В иерархических сетях все задачи, связанные с хранением, обработкой данных, их представлением пользователям, выполняет центральный компьютер. Пользователь взаимодействует с центральным компьютером с помощью терминала. Операциями ввода/вывода информации на экран управляет центральный компьютер.
Достоинства иерархических систем:
- отработанная технология обеспечения отказоустойчивости, сохранности данных;
- надежная система защиты информации и обеспечения секретности.
- высокая стоимость аппаратного и программного обеспечения, высокие эксплуатационные расходы;
- быстродействие и надежность сети зависят от центрального компьютера.
- равноправная сеть;
- сеть с выделенным сервером.
Методы доступа и протоколы передачи данных в лвс
В различных сетях существуют различные процедуры обмена данными между рабочими станциями. Эти процедуры называют протоколамипередачи данных.
Протокол — набор правил (язык), определяющий взаимодействие двух одноименных уровней модели взаимодействия открытых систем в различных абонентских ЭВМ.
В соответствии с семиуровневой структурой модели можно говорить о необходимости существования протоколов для каждого уровня.
Концепция открытых системпредусматривает разработку стандартов для протоколов различных уровней. Легче всего поддаются стандартизации протоколы трех нижних уровней модели архитектуры открытых систем, так как они определяют действия и процедуры, свойственные для вычислительных сетей любого класса.
Труднее всего стандартизовать протоколы верхних уровней, особенно прикладного, из-за множественности прикладных задач и в ряде случаев их уникальности. Если по типам структур, методам доступа к физической передающей среде, используемым сетевым технологиям и некоторым другим особенностям можно насчитать примерно десяток различных моделей вычислительных сетей, то по их функциональному назначению пределов не существует.
Протоколы сетевого уровня
Для работы в конкретной сети компьютер должен «разговаривать» на определенном языке. Такой язык называется сетевым протоколом. Протоколы позволяют компьютерам «обмениваться» информацией и поддерживать целостность передаваемых данных. Большинство сетевых операционных систем для связи со своим сервером используют следующие протоколы:
- IPX/SPX-Novell NetWare, Windows NT Server.
- NetBIOS-Windows NT Server, OS/2 LAN Server.
- TCP/IP-UNIX. Windows NT Server. Windows 95 поддерживает все перечисленные протоколы.