Протокол ARP
ARP — протокол разрешения адресов (Address Resolution Protocol) является протоколом третьего (сетевого) уровня модели OSI, используется для преобразования IP-адресов в MAC-адреса, играет важную функцию в множественном доступе сетей. ARP была определена RFC 826 в 1982 году. В TCP/IP не рассматриваются технологии канального и физического уровней, при реальной передаче данных все равно приходится отображать IP адрес на адрес канального уровня. В сети Ethernet для идентификации источника и получателя информации используются IP и MAC адреса. Информация, пересылаемая от одного компьютера другому по сети, содержит в себе физический адрес отправителя, IP-адрес отправителя, физический адрес получателя и IP-адрес получателя. ARP-протокол обеспечивает связь между этими двумя адресами, поскольку эти два адреса никак друг с другом не связаны. Непосредственно связь между IP адресом и MAC адресом осуществляется с помощью так называемых ARP-таблиц, где в каждой строке указывается соответствие IP адреса MAC адресу. Пример ARP-таблицы в ОС Windows представлен на рисунке.
В ARP-таблице, помимо IP и MAC адреса, еще указывается тип связи, существует два типа записей:
- Статические записи создаются вручную, они существуют до тех пор, пока компьютер или маршрутизатор остается включенным.
- Динамические записи должны периодически обновляться. Если запись не обновлялась в течении определенного времени (приблизительно 2 минуты), то она исключается из таблицы. В ARP-таблице содержаться записи не обо всех узлах сети. А только те, которые активно участвуют в сетевых операциях. Такой способ хранения называется ARP-кэшем.
В IPv6 функциональность ARP обеспечивает протокол NDP (Neighbor Discovery Protocol Протокол Обнаружения Соседей).
RARP (англ. Reverse Address Resolution Protocol — Обратный протокол преобразования адресов) — протокол третьего (сетевого) уровня модели OSI, выполняет обратное отображение адресов, то есть преобразует аппаратный адрес в IP-адрес.
Существует четыре типа ARP-сообщений:
- ARP-запрос (ARP request);
- ARP-ответ (ARP reply);
- RARP-запрос (RARP-request);
- RARP-ответ (RARP-reply).
Структура заголовка ARP
- Hardware type (HTYPE) Каждый канальный протокол передачи данных имеет свой номер, который хранится в этом поле. Например, Ethernet имеет номер 0x0001
- Protocol type (PTYPE) Код сетевого протокола. Например, для IPv4 будет записано 0x0800
- Hardware length (HLEN) Длина физического адреса в байтах. Адреса Ethernet имеют длину 6 байт.
- Protocol length (PLEN) Длина логического адреса в байтах. IPv4 адреса имеют длину 4 байта.
- Operation Код операции отправителя: 1 в случае запроса и 2 в случае ответа.
- Sender hardware address (SHA) Физический адрес отправителя.
- Sender protocol address (SPA) Логический адрес отправителя.
- Targethardwareaddress (THA) Физический адрес получателя. Поле пусто при запросе.
- Target protocol address (TPA) Логический адрес получателя.
Рассмотрим структуру заголовка ARP запроса (request) на примере перехваченного пакета с помощью сетевого анализатора Wireshark
Рассмотрим структуру заголовка ARP ответа (reply) на примере перехваченного пакета с помощью сетевого анализатора Wireshark
Протокол ARP и «с чем его едят» (дополнено)
Спасибо хабраюзеру hardex за публикацию первоначальной статьи, а также всем, кто плюсанул в карму для возможности моей собственноручной публикации. Теперь дополненная версия с учетом пожеланий и дополнений. Добро пожаловать под кат.
Доброго времени суток, дорогие хабраюзеры. Этой статьей я хочу начать цикл повествования о протоколах, которые помогают нам прозрачно, быстро и надежно обмениваться информацией. И начать с протокола ARP.
Как известно, адресация в сети Internet представляет собой 32-битовую последовательность 0 и 1, называющихся IP-адресами. Но непосредственно связь между двумя устройствами в сети осуществляется по адресам канального уровня (MAC-адресам).
Так вот, для определения соответствия между логическим адресом сетевого уровня (IP) и физическим адресом устройства (MAC) используется описанный в RFC 826 протокол ARP (Address Resolution Protocol, протокол разрешения адресов).
ARP состоит из двух частей. Первая – определяет физический адрес при посылке пакета, вторая – отвечает на запросы других станций.
Протокол имеет буферную память (ARP-таблицу), в которой хранятся пары адресов (IP-адрес, MAC-адрес) с целью уменьшения количества посылаемых запросов, следовательно, экономии трафика и ресурсов.
Пример ARP-таблицы.
192.168.1.1 08:10:29:00:2F:C3
192.168.1.2 08:30:39:00:2F:C4
Слева – IP-адреса, справа – MAC-адреса.
Прежде, чем подключиться к одному из устройств, IP-протокол проверяет, есть ли в его ARP-таблице запись о соответствующем устройстве. Если такая запись имеется, то происходит непосредственно подключение и передача пакетов. Если же нет, то посылается широковещательный ARP-запрос, который выясняет, какому из устройств принадлежит IP-адрес. Идентифицировав себя, устройство посылает в ответ свой MAC-адрес, а в ARP-таблицу отправителя заносится соответствующая запись.
Записи ARP-таблицы бывают двух вид видов: статические и динамические. Статические добавляются самим пользователем, динамические же – создаются и удаляются автоматически. При этом в ARP-таблице всегда хранится широковещательный физический адрес FF:FF:FF:FF:FF:FF (в Linux и Windows).
Создать запись в ARP-таблице просто (через командную строку):
Вывести записи ARP-таблицы:
После добавления записи в таблицу ей присваивается таймер. При этом, если запись не используется первые 2 минуты, то удаляется, а если используется, то время ее жизни продлевается еще на 2 минуты, при этом максимально – 10 минут для Windows и Linux (FreeBSD – 20 минут, Cisco IOS – 4 часа), после чего производится новый широковещательный ARP-запрос.
Сообщения ARP не имеют фиксированного формата заголовка и при передаче по сети инкапсулируются в поле данных канального уровня
Формат сообщения ARP.
- тип сети (16 бит): для Ethernet – 1;
- тип протокола (16 бит): h0800 для IP;
- длина аппаратного адреса (8 бит);
- длина сетевого адреса (8 бит);
- тип операции (16 бит): 1 – запрос, 2 — ответ;
- аппаратный адрес отправителя (переменная длина);
- сетевой адрес отправителя (переменная длина);
- аппаратный адрес получателя (переменная длина);
- сетевой адрес получателя (переменная длина).
А вот как происходит определение маршрута с участием протокола ARP.
Пусть отправитель A и получатель B имеют свои адреса с указанием маски подсети.
- Если адреса находятся в одной подсети, то вызывается протокол ARP и определяется физический адрес получателя, после чего IP-пакет инкапсулируется в кадр канального уровня и отправляется по указанному физическому адресу, соответствующему IP-адресу назначения.
- Если нет – начинается просмотр таблицы в поисках прямого маршрута.
- Если маршрут найден, то вызывается протокол ARP и определяется физический адрес соответствующего маршрутизатора, после чего пакет инкапсулируется в кадр канального уровня и отправляется по указанному физическому адресу.
- В противном случае, вызывается протокол ARP и определяется физический адрес маршрутизатора по умолчанию, после чего пакет инкапсулируется в кадр канального уровня и отправляется по указанному физическому адресу.
Главным достоинством проткола ARP является его простота, что порождает в себе и главный его недостаток – абсолютную незащищенность, так как протокол не проверяет подлинность пакетов, и, в результате, можно осуществить подмену записей в ARP-таблице (материал для отдельной статьи), вклинившись между отправителем и получателем.
Бороться с этим недостатком можно, вручную вбивая записи в ARP-таблицу, что добавляет много рутинной работы как при формировании таблицы, так и последующем ее сопровождении в ходе модификации сети.
Существуют еще протоколы InARP (Inverse ARP), который выполняет обратную функцую: по заданному физическому адресу ищется логический получателя, и RARP (Reverse ARP), который схож с InARP, только он ищет логический адрес отправителя.
В целом, протокол ARP универсален для любых сетей, но используется только в IP и широковещательных (Ethernet, WiFi, WiMax и т.д.) сетях, как наиболее широко распространенных, что делает его незаменимым при поиске соответствий между логическими и физическими адресами.
P.S. Эту статью писал я сам, никуда не подглядывая, основываясь только на своих знаниях, полученных в ходе изучения сетей.