Тема 14: Компьютерные сети
14.1 Назначение и классификация компьютерных сетей.
Распределенная обработка данных. Современное производство требует высоких скоростей обработки информации, удобных форм ее хранения и передачи. Необходимо также иметь динамичные способы обращения к информации, способы поиска данных в заданные временные интервалы; реализовывать сложную математическую и логическую обработку данных. Управление крупными предприятиями, управление экономикой на уровне страны требуют участия в этом процессе достаточно крупных коллективов. Такие коллективы могут располагаться в различных районах города, в различных регионах страны и даже в различных странах. Для решения задач управления, обеспечивающих реализацию экономической стратегии, становятся важными и актуальными скорость и удобство обмена информацией, а также возможность тесного взаимодействия всех участвующих в процессе выработки управленческих решений.
Распределенная обработка данных – обработка данных, выполняемая на независимых, но связанных между собой компьютерах, представляющих распределенную систему.
Для реализации распределенной обработки данных были созданы многомашинные ассоциации, структура которых разрабатывается по одному из следующих направлений:
- многомашинные вычислительные комплексы (МВК);
- компьютерные (вычислительные) сети.
Многомашинный вычислительный комплекс – группа установленных рядом вычислительных машин, объединенных с помощью специальных средств сопряжения и выполняющих совместно единый информационно-вычислительный процесс. Многомашинные вычислительные комплексы могут быть:
- локальными при условии установки компьютеров в одном помещении, не требующих для взаимосвязи специального оборудования и каналов связи;
- дистанционными, если некоторые компьютеры комплекса установлены на значительном расстоянии от центральной ЭВМ и для передачи данных используется телефонные каналы связи.
Компьютерная (вычислительная) сеть – совокупность компьютеров и терминалов, соединенных с помощью каналов связи в единую систему, удовлетворяющую требованиям распределенной обработки данных. Обобщенная структура компьютерной сети. Компьютерные сети являются высшей формой многомашинных ассоциаций. Объединение в один комплекс средств вычислительной техники, аппаратуры связи и каналов передачи данных предъявляет специфические требования со стороны каждого элемента многомашинной ассоциации, а также требует формирования специальной терминологии. Абоненты сети – объекты, генерирующие или потребляющие информацию в сети. Абонентами сети могут быть отдельные ЭВМ, комплексы ЭВМ, терминалы, промышленные роботы, станки с числовым программным управлением и т. д. Любой абонент сети подключается к станции. Станция – аппаратура, которая выполняет функции, связанные с передачей и приемом информации. Совокупность абонента и станции принято называть абонентской системой. Для организации взаимодействия абонентов необходима физическая передающая среда. Физическая передающая среда– линии связи или пространство, в котором распространяются электрические сигналы, и аппаратура передачи данных. На базе физической передающей среды строится коммуникационная сеть, которая обеспечивает передачу информации между абонентскими системами. Такой подход позволяет рассматривать любую компьютерную сеть как совокупность абонентских систем и коммуникационной сети. Обобщенная структура компьютерной сети приведена на рис. 7.1. Классификация вычислительных сетей. В зависимости от территориального расположения абонентских систем вычислительные сети можно разделить на три основных класса:
- глобальные сети (WAN – Wide Area Network);
- региональные сети (MAN – Metropolitan Area Network);
- локальные сети (LAN – Local Area Network).
Глобальная вычислительная сеть объединяет абонентов, расположенных в разных странах, на различных континентах. Взаимодействие между абонентами такой сети может осуществляться на базе телефонных линий связи, радиосвязи и систем спутниковой связи. Глобальные вычислительные сети позволяют решить проблему объединения информационных ресурсов всего человечества и организации доступа к этим ресурсам. Региональная вычислительная сеть связывает абонентов, расположенных на значительном расстоянии друг от друга. Она может включать абонентов внутри большого города, экономического региона, отдельной страны. Обычно расстояние между абонентами региональных вычислительных сетей составляет десятки – сотни километров. Локальнаявычислительная сеть объединяет абонентов, расположенных в пределах небольшой территории. В настоящее время не существует четких ограничений на территориальный разброс абонентов локальной вычислительной сети. Обычно такая сеть привязана к конкретному месту. К классу локальных вычислительных относятся сети отдельных предприятий, фирм, офисов и т. д. Протяженность такой сети можно ограничить пределами 2 – 2,5 км. Объединение глобальных, региональных и локальных вычислительных сетей позволяет создавать многосетевые иерархии. Они обеспечивают мощные, экономически целесообразные средства обработки огромных информационных массивов и доступ к неограниченным информационных ресурсам. На рис. 7.2 приведена одна из возможных иерархий вычислительных сетей. 14.2 Характеристика процесса передачи данных. Аппаратная реализация передачи данных Режимы передачи данных. Любая коммуникационная есть должна включать следующие основные компоненты: передатчик, сообщение, средства передачи, приемник.Передатчик – устройство, являющееся источником данных. Приемник – устройство, принимающее данные. Приемником могут быть компьютер, терминал или какое-либо цифровое устройство. Сообщение – цифровые данные определенного формата, предназначенные для передачи. Это может быть файл базы данных, таблица, ответ на запрос, текст или изображение. Для передачи сообщений в вычислительных сетях используются различные типы каналов связи. Наиболее распространены выделенные телефонные каналы и специальные каналы для передачи цифровой информации. Применяются также радиоканала и каналы спутниковой связи. Для характеристики процесса обмена сообщениями в вычислительной сети по каналам связи используются следующие понятия: режим передачи, код передачи, тип синхронизации. Режим передачи. Существуют три режима передачи: симплексный, полудуплексный и дуплексный. Симплексный режим – передача данных только в одном направлении. Полудуплексный режим – попеременная передача информации, когда источник и приемник последовательно меняются местами. Дуплексный режим – одновременная передача и прием сообщений. Дуплексный режим является наиболее скоростным режимом работы и позволяет эффективно использовать вычислительные возможности быстродействующих ЭВМ в сочетании с высокой скоростью передачи данных по каналам связи. Коды передачи данных. Для передачи информации по каналам связи используются специальные коды. Эти коды стандартизированы и определены рекомендациямиISO(InternationalOrganizationforStandardization) – Международной организации по стандартизации (МОС) или Международного консультативного комитета по телефонии и телеграфии (МККТТ). Наиболее распространенным кодом передачи по каналам связи является код ASCII. Принятый для обмена информацией практически во всем мире (отечественный аналог – код КОИ-7). Следует обратить внимание еще на один способ связи между ЭВМ, когда ЭВМ объединены в комплекс с помощью интерфейсного кабеля и с помощью двухпроводной линии связи. Интерфейсный кабель – это набор проводов, по которым передаются сигналы от одного устройства компьютера к другому. Чтобы обеспечить быстродействие, для каждого сигнала выведен отдельный провод. Сигналы передаются в определенной последовательности и в определенных комбинациях друг с другом. Сигналы передаются в определенной последовательности и в определенных комбинациях друг с другом. Для передачи кодовой комбинации используется столько линий, сколько битов эта комбинация содержит. Каждый бит передается по отдельному проводу. Это параллельная передача или передача параллельным кодом. Для передачи кодовой комбинации по двухпроводной линии группа битов передается по одному проводу бит за битом. Это передача информации последовательным кодом.Типы синхронизации данных.Процессы передачи или приема информации в вычислительных сетях могут быть привязаны к определенным временным отрезкам, т. е. один из процессов может начаться после того, как получит данные от другого процесса. Такие процессы называютсясинхронными. В то же время существуют процессы, в которых нет такой привязки, и они могут выполняться независимо от степени полноты передачи данных. Такие процессы называются асинхронными.Синхронизация данных– согласование различных процессов во времени. В системах передачи данных используются два способа передачи данных: синхронный и асинхронный. При синхронной передаче информация передается блоками, которые обрамляются специальными управляющими символами. В состав блока включается также специальные синхросимволы, обеспечивающие контроль состояния физической передающей среды, и символы, позволяющие обнаруживать ошибки при обмене информацией. В конце блока данных при синхронной передаче в канал связи выдается контрольная последовательность, сформированная по специальному алгоритму. По этому же алгоритму формируется контрольная последовательность при приеме информации из канала связи. Если обе последовательности совпадают – ошибок нет. Блок данных принят. Если же последовательности не совпадают – ошибка. Передача повторяется до положительного результата проверки. Если повторные передачи не дают положительного результата, то фиксируется состояние аварии. Синхронная передача – высокоскоростная и почти безошибочная. Она используется для обмена сообщениями между ЭВМ в вычислительных сетях. Синхронная передача требует дорогостоящего оборудования. При асинхроннойпередаче данные передаются в канал связи как последовательность битов, из которой при приеме необходимо выделить байты для последующей обработки. Для этого каждый байт ограничивается стартовым и стоповым битами, которые и позволяют произвести выделение их из потока передачи. Иногда в линиях связи с низкой надежностью используется несколько пар таких битов. Дополнительные стартовые и стоповые биты несколько снижают эффективную скорость передачи данных и соответственно пропускную способность канала связи. В то же время асинхронная передача не требует дорогостоящего оборудования и отвечает требованиям организации диалога в вычислительной сети при взаимодействии персональных ЭВМ.