Режимы работы вычислительных сетей

11. Современные тенденции в лвс. Режимы передачи данных.

Под Локальной вычислительной сетью(ЛВС, LAN – Local Area Network) понимают совместное подключение отдельных компьютеров (рабочих станций) к каналу передачи данных. Понятие ЛВС относится к географически ограниченным реализациям, в которых несколько рабочих станций связаны друг с другом с помощью соответствующих средств коммуникаций. ЛВС включает в себя кабельную локальную сеть ЛВС или СКС, активное сетевое оборудование и компьютеры различного назначения.

Современные тенденции.

Сегодня вычислительные сети продолжают развиваться, причем достаточно быстро. Разрыв между локальными и глобальными сетями постоянно сокращается во многом из-за появления высокоскоростных территориальных каналов связи, не уступающих по качеству кабельным системам локальных сетей. В глобальных сетях появляются службы доступа к ресурсам, такие же удобные и прозрачные, как и службы локальных сетей. Подобные примеры в большом кол-ве демонстрирует самая популярная глобальная сеть – Internet.

Изменяются и локальные сети. Вместо соединяющего компьютеры пассивного кабеля в них в большом кол-ве появилось разнообразное коммуникационное оборудование – коммутаторы, маршрутизаторы, шлюзы. Благодаря такому оборудованию появилась возможность построения больших корпоративных сетей, насчитывающих тысячи компьютеров и имеющих сложную структуру. Возродился интерес к крупным компьютерам – в основном из-за того, что после спада эйфории по поводу легкости работы с персональными компьютерами выяснилось, что системы, состоящие из сотен серверов, обслуживать сложнее, чем несколько больших компьютеров. Поэтому на новом витке эволюционной спирали мэйнфреймы стали возвращаться в корпоративные вычислительные системы, но уже как полноправные сетевые узлы, поддерживающие Ethernet или Token Ring, а также стек протоколов TCP/IP, ставший благодаря Internet сетевым стандартом.

Проявилась еще одна очень важная тенденция, затрагивающая в равной степени как локальные, так и глобальные сети. В них стала обрабатываться несвойственная ранее вычислительным сетям информация – голос, видеоизображения, рисунки. Это потребовало внесения изменений в работу протоколов, сетевых операционных систем и коммуникационного оборудования. Сложность передачи такой мультимедийной информации по сети связана с ее чувствительностью к задержкам при передаче пакетов данных – задержки обычно приводят к искажению такой информации в конечных узлах сети. Так как традиционные службы вычислительных сетей – такие как передача файлов или электронная почта – создают малочувствительный к задержкам трафик и все элементы сетей разрабатывались в расчете на него, то появление трафика реального времени привело к большим проблемам.

Режимы передачи данных

Любая коммуникационная сеть должна включать следующие основные компоненты: передатчик, сообщение, средства передачи, приемник.

Передатчик – устройство, являющееся источником данных.

Приемник – устройство, принимающее данные.

Приемником могут быть компьютер, терминал или какое-либо цифровое устройство,

Читайте также:  Локальные сети топология и компоненты локальных сетей

Сообщение – цифровые данные определенного формата, предназначенные для передачи.

Это может быть файл базы данных, таблица, ответ на запрос, текст или изображение

Средства передачи – физическая передающая среда и специальная аппаратура, обеспечивающая передачу сообщений.

Для характеристики процесса обмена сообщениями в вычислительной сети по каналам связи используются следующие понятия: режим передачи, код передачи, тип синхронизации.

Режим передачи. Существуют три режима передачи: симплексный, полудуплексный и дуплексный.

Симплексный режим – передача данных только в одном направлении.

Примером симплексного режима передачи является система, в которой информация, собираемая с помощью датчиков, передается для обработки на ЭВМ. В вычислительных сетях симплексная передача практически не используется,

Полудуплексный режим – попеременная передача информации, когда источник и приемник последовательно меняются местами.

Яркий пример работы в полудуплексном режиме – разведчик, передающий в Центр информацию, а затем принимающий инструкции из Центра.

Дуплексный режим – одновременные передача и прием сообщений.

Дуплексный режим является наиболее скоростным режимом работы и позволяет эффективно использовать вычислительные возможности быстродействующих ЭВМ в сочетании с высокой скоростью передачи данных по каналам связи.

Источник

1.Назначение, уровни, режимы работы и предоставляемые услуги вычислительных сетей.

По мере совершенствования компьютеров, увеличения их числа, развития и усложнения средств ПО, в том числе и прикладного, увеличения объемов баз данных возникла насущная необходимость в соединении компьютеров между собой. Такое связывание компьютеров, позволяющее объединить их ресурсы — процессоры, память (внутреннюю и внешнюю, включая жесткие диски, разнообразные внешние устройства — принтеры, факс-аппараты, модемы и др.), каналы связи, и представляет собой вычислительную сеть, в которой каждый компьютер может передать другому компьютеру, подключенному к сети, любой набор данных.

Таким образом любая компьютерная система, состоящая из нескольких компьютеров наверняка перерастет в более сложную систему, которая потребует высокоскоростного обмена данными между компьютерами с сервисными возможностями. Такой обмен не может быть организован при помощи стандартных простых средств операционных систем (ОС) и прикладных программ, а требует организации принципиально новой информационной структуры — сети.

Компьютерные сети представляют собой магистральные информационные структуры, состоящие из логического и физического уровней или составляющих, основным назначением которых является обмен информацией.

Физический уровень представлен компонентами сети, обеспечивающими физическое соединение между компьютерами. Такими компонентами, как правило являются: сетевой интерфейс (сетевая карта или плата сетевого адаптера, стандартный или расширенный коммуникационный или параллельный порт или мультипортовая плата), сетевая среда передачи данных (кабель коаксиальный, двухпроводный т.н. витая пара или оптоволоконный) и узловые элементы (маршрутиризаторы, концентраторы, повторители (репитеры, хабы (hub)), переключатели (switch)) и конечные элементы (терминаторы, коннекторы, разъемы, заглушки).

Логический уровень — это разнообразное программное обеспечение, предоставляющее возможность использования имеющихся в наличии физических компонент сети. Среди всего многообразия ПО можно выделить несколько типов: драйверы и демон-процессы сетевых протоколов операционных систем, программы-серверы и клиенты сетевых сервисов или служб.

Читайте также:  Объединение компьютеров в общую локальную сеть

· Обмен данными между абонентскими системами;

· Запрос и выдача информации;

· Пакетная обработка по запросам удаленных пользователей;

Предоставляемые услуги:

· телекоммуникационные услуги — “электронная почта”; телеконференции и телесеминары; (электронные доски объявлений); передача больших массивов — файлов; размножение сообщений и передача их по заранее подготовленному списку и др.;

· информационные услуги: поиск информации по вопросам, интересующим абонентов;

· консультационные услуги: консультации по информационному и программному обеспечению сети; консультации по технологии использования общесетевых ресурсов и др.;

· технические услуги: установка программного обеспечения, установка и тестирование модемов и др.;

· рекламные услуги: размещение рекламы в электронных конференциях и семинарах, на электронных досках объявлений.

Источник

Классификация вычислительных сетей

В зависимости от территориального расположения абонентских систем вычислительные сети можно разделить на три основных класса:

  • глобальные сети (WAN — Wide Area Network);
  • региональные сети (MAN — Metropolitan Area Network);
  • локальные сети (LAN — Local Area Network).

Глобальная вычислительная сеть объединяет абонентов, расположенных в различных странах, на различных континентах.

Взаимодействие между абонентами такой сети может осуществляться на базе телефонных линий связи, радиосвязи и систем спутниковой связи. Глобальные вычислительные сети позволяют решить проблему объединения информационных ресурсов всего человечества и организации доступа к этим ресурсам.

Региональная вычислительная сеть связывает абонентов, расположенных на значительном расстоянии друг от друга. Она может включать абонентов внутри большого города, экономического региона, отдельной страны. Обычно расстояние абонентами региональной вычислительной сети составляет десятки — сотни километров.

Локальная вычислительная сеть объединяет абонентов, расположенных в пределах небольшой территории. В настоящее время не существует четких ограничений на территориальный разброс абонентов локальной вычислительной сети. К классу локальных вычислительных сетей относятся сети отдельных предприятий, фирм, банков, офисов и т. д. Протяженность такой сети можно ограничить пределами 2 — 2,5 км.

Объединение глобальных, региональных и локальных вычислительных сетей позволяет создавать многосетевые иерархии. Они обеспечивают мощные, экономически целесообразные средства обработки огромных информационных массивов и доступ к неограниченным информационным ресурсам.

Локальные вычислительные сети могут входить как компоненты в состав региональной сети, региональные сети — объединяться в составе глобальной сети и, наконец, глобальные сети могут также образовывать сложные структуры.

Рис. 4. Иерархия компьютерных сетей

Характеристика процесса передачи данных Режимы передачи данных

Любая коммуникационная сеть должна включать следующие основные компоненты:

Передатчик — устройство, являющееся источником данных.

Приемник— устройство, принимающее данные.

Приемником могут быть компьютер, терминал или какое-либо цифровое устройство.

Сообщение — цифровые данные определенного формата, предназначенные для передачи.

Это может быть файл базы данных, таблица, ответ на запрос, текст или изображение.

Читайте также:  Типы передачи информации в вычислительных сетях

Средства передачи — физическая передающая среда и специальная аппаратура, обеспечивающая передачу сообщений.

Для передачи сообщений в вычислительных сетях используются различные типы каналов связи. Наиболее распространены выделенные телефонные каналы и специальные каналы для передачи цифровой информации. Применяются также радиоканалы и каналы спутниковой связи.

Особняком в этом отношении стоят ЛВС, где в качестве передающей среды используются витая пара проводов, коаксиальный кабель и оптоволоконный кабель.

Для характеристики процесса обмена сообщениями в вычислительной сети по каналам связи используются следующие понятия:

Существуют три режима передачи:

Симплексный режим — передача данных только в одном направлении.

Примером симплексного режима передачи (рис. 5) является система, в которой информация, собираемая с помощью датчиков, передается для обработки на ЭВМ. В вычислительных сетях симплексная передача практически не используется.

Полудуплексный режим — попеременная передача информации, когда источник и приемник последовательно меняются местами (рис. 6).

Яркий пример работы в полудуплексном режиме — разведчик, передающий в Центр информацию, а затем принимающий инструкции из Центра.

Дуплексный режим — одновременные передача и прием сообщений.

Дуплексный режим (рис. 7) является наиболее скоростным режимом работы и позволяет эффективно использовать вычислительные возможности быстродействующих ЭВМ в сочетании с высокой скоростью передачи данных по каналам связи. Пример дуплексного режима — телефонный разговор.

Рис.5.Симплексный режим передачи

Рис.6.Полудуплексный режим переда

Рис.7.Дуплексный режим передачи

Для передачи информации по каналам связи используются специальные коды. Коды стандартизованы и определены рекомендациями ISO — Международной организации по стандартизации (МОС) или Международного консультативного комитета по телефонии и телеграфии (МККТТ).

Наиболее распространенным кодом передачи по каналам связи является код ASCII, принятый для обмена информацией практически во всем мире (отечественный аналог — код КОИ-8).

Существует два способа объединения ЭВМ между собой:

Интерфейсный кабель — это набор проводов, по которым передаются сигналы от одного устройства компьютера к другому.

Сигналы передаются в определенной последовательности и в определенных комбинациях друг с другом.

Для передачи кодовой комбинации используется:

при первом способе — параллельная передача или передача параллельным кодом (каждый бит передается по отдельному проводу).

При втором способе – передача последовательным кодом (по двухпроводной линии группа битов передается по одному проводу бит за битом).

Передача параллельным кодом обеспечивает высокое быстродействие, но требует повышенных затрат на создание физической передающей среды и обладает плохой помехозащищенностью. В вычислительных сетях передача параллельными кодами не используется, а используется при организации локальных МВК, для внутренних связей ЭВМ и для небольших расстояний между абонентами сети.

Передача последовательным кодом медленнее, так как требует преобразования данных в параллельный код для дальнейшей обработки в ЭВМ, но экономически более выгодна для передачи сообщений на большие расстояния.

Источник

Оцените статью
Adblock
detector