1.4. Топология сетей связи
Топологией сетиназывают принятую организацию связей между ее элементами на физическом уровне, или геометрию построения сети.
С позиций топологии различают следующие виды сетей: шинные(линейные),кольцевые(петлевые),радиальные(звездообразные),распределенные радиальные(сотовые),иерархические(древовидные),полносвязные(сетка),смешанные(гибридные).
Рассмотрим основные из них или, иначе говоря, базовые структуры.
Сети с топологией общей шиныиспользуют одиночный линейный канал передачи данных, к которому все узлы подсоединены посредством относительно коротких соединительных линий. Общая шина чаще всего формируется с использованием коаксиального кабеля, называемого магистральным (backbone). Данные от передающего узла сети распространяются по шине в обе стороны. Промежуточные узлы не ретранслируют поступающих сообщений. Информация поступает на все узлы, но принимает сообщение только тот, которому оно адресовано. Для удаления сигнала из кабеля на концах шины должны использоваться специальные прерыватели (terminator). Механическое повреждение магистрали сказывается на работе всех устройств, подключенных к ней. Низкая надежность общей шины – основной недостаток рассмотренной топологии сети. Еще один недостаток сети с общей шиной – ее невысокая производительность, так как при выбранном способе подключения в каждый момент времени данные в сеть может передавать только одна станция, при этом пропускная способность канала связи делится между всеми узлами сети.
Шинная топология – одна из наиболее простых топологий. Такую сеть легко наращивать и конфигурировать, а также адаптировать к различным системам; она устойчива к возможным неисправностям отдельных узлов.
Поскольку в шинной сети используется общее звено передачи данных, требуется использовать некоторый способ управления доступом, чтобы определять, когда станции могут передавать свои данные на шину. Наиболее общий метод доступа, используемый в шинных сетях, – множественный доступ с контролем несущей.
Сеть шинной топологии применяет широко известная сеть Ethernetи организованная на ее базеNetWareNovell, очень часто используемая в офисах. Условно такую сеть можно изобразить, как показано на рис. 1.3.
Рисунок 1.3 – Сеть с шинной топологией
При построении шинной сети допускается использовать несколько взаимосвязанных шин. Сформированную таким образом сеть называют иерархической (древовидной) сетью.
В сети с кольцевой (петлевой) топологиейвсе узлы соединены в единую замкнутую петлю (кольцо) каналами связи. Выход одного узла сети соединяется со входом другого.
Информация по кольцу передается от узла к узлу, и каждый узел ретранслирует посланное сообщение. В каждом узле для этого имеются своя интерфейсная и приемо-передающая аппаратура, позволяющая управлять прохождением данных в сети. Передача данных по кольцу с целью упрощения приемо-передающей аппаратуры выполняется только в одном направлении. Принимающий узел распознает и получает только адресованные ему сообщения. Кольцо представляет собой удобную конфигурацию для организации обратной связи: переданные данные, сделав оборот, возвращаются к источнику. Таким образом можно контролировать процесс доставки данных адресату, а также тестировать сеть с целью поиска некорректно работающего узла.
Ввиду своей гибкости и надежности работы сети с кольцевой топологией получили широкое распространение на практике (например, сеть TokenRing).
Структура сети с кольцевой топологией показана на рис. 1.4.
Рисунок 1.4 – Сеть с кольцевой топологией
Основу сети с радиальной топологией (звезда)составляет центральный узел, который ретранслирует, переключает и маршрутизирует информационные потоки в сети. Центральный узел напрямую соединяется с каждым из узлов сети. В зависимости от типа центрального устройства принимаемый с одного входа сигнал может транслироваться (с усилением или без) на все выходы либо на конкретный выход, к которому подключено устройство — получатель информации.
В такой сети актуальна проблема надежности: при выходе из строя центрального узла вместе с ним выйдет из строя и вся сеть. Для предотвращения таких ситуаций нужно создать в центральном узле высокий уровень избыточности с помощью нескольких процессоров, переключателей, других устройств, чтобы обеспечить необходимое дублирование любой отказавшей части системы. Повышение надежности сказывается на стоимости системы.
Необходимость справляться с запросами всех узлов определяет сложность центрального узла и, соответственно, дороговизну системы в целом.
В качестве недостатков радиальной сети можно отметить:
— большую загруженность центральной аппаратуры;
— полную потерю работоспособности сети при отказе центральной аппаратуры;
— большую протяженность линий связи;
— отсутствие гибкости в выборе пути передачи информации.
Сети с радиальной топологией преимущественно используются в системах с явно выраженным централизованным управлением.
Структура радиальной сети показана на рис. 1.5.
Рисунок 1.5 – Сеть с радиальной топологией
Существуют радиальные сети с пассивным центром – вместо центрального узла в таких сетях устанавливается коммутирующее устройство, обычно концентратор, обеспечивающий подключение одного передающего канала сразу ко всем остальным.
Топология полносвязной (сеточной)вычислительной сети представлена на рис. 1.6.
Эта топология обладает значительной избыточностью и считается непрактичной для организации крупных сетей. Необходимость наличия большого числа коммуникационных портов для каждого из узлов и отдельных электрических линий связи делает такой вариант построения громоздким и неэффективным.
Несмотря на отмеченные недостатки, полносвязная топология обладает высокой отказоустойчивостью.
На практике находит применение частичная сеточная топология – структура, при которой некоторые звенья полносвязной топологии пропускаются, и ряд узлов может связываться с другими только через промежуточные узлы. Такая конфигурация является более практичной: узлы, которые имеют большой трафик, соединяются напрямую, а остальные узлы – через промежуточные.
Рисунок 1.6 – Полносвязная топология вычислительной сети
Одна из разновидностей сеточной топологии – сотовая (cellular), использующая беспроводные соединения между узлами сети. В ней сетевые устройства и компьютеры объединяются в зоны – ячейки (cell), взаимодействуя только с приемо-передающим устройством ячейки. Передача информации между ячейками осуществляется приемо-передающими устройствами.
Небольшие сети, как правило, имеют типовую топологию. Для крупных сетей характерно наличие разнообразных связей между узлами. В таких сетях можно выделить отдельные фрагменты (подсети) с типовой топологией, а топологию сети в целом называют гибридной (смешанной).
Виды топологий
- общая шина (Bus);
- кольцо (Ring);
- звезда (Star);
- древовидная (Tree);
- ячеистая (Mesh).
Рис. 4.14 Типы топологий
Общая шина
Общая шина это тип сетевой топологии, в которой рабочие станции расположены вдоль одного участка кабеля, называемого сегментом. Рис. 4.15 ТопологияОбщая шина Топология Общая шина(рис. 4.2) предполагает использование одного кабеля, к которому подключаются все компьютеры сети. В случае топологииОбщая шинакабель используется всеми станциями по очереди. Принимаются специальные меры для того, чтобы при работе с общим кабелем компьютеры не мешали друг другу передавать и принимать данные. Все сообщения, посылаемые отдельными компьютерами, принимаются и прослушиваются всеми остальными компьютерами, подключенными к сети.Рабочая станцияотбирает адресованные ей сообщения, пользуясьадреснойинформацией. Надежность здесь выше, так как выход из строя отдельных компьютеров не нарушит работоспособность сети в целом. Поиск неисправности в сети затруднен. Кроме того, так как используется только один кабель, в случае обрыва нарушается работа всей сети. Шинная топология — это наиболее простая и наиболее распространенная топология сети. Примерами использования топологии общая шина является сеть 10Base–5 (соединение ПК толстым коаксиальным кабелем) и 10Base–2 (соединение ПК тонким коаксиальным кабелем). Кольцо Рис. 4.16 ТопологияКольцо Кольцо – это топология ЛВС, в которой каждая станция соединена с двумя другими станциями, образуя кольцо (рис.4.3). Данные передаются от одной рабочей станции к другой в одном направлении (по кольцу). Каждый ПК работает как повторитель, ретранслируя сообщения к следующему ПК, т.е. данные, передаются от одного компьютера к другому как бы по эстафете. Если компьютер получает данные, предназначенные для другого компьютера, он передает их дальше по кольцу, в ином случае они дальше не передаются. Очень просто делается запрос на все станции одновременно. Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них, вся сеть парализуется. Подключение новой рабочей станции требует краткосрочного выключения сети, т.к. во время установки кольцо должно быть разомкнуто. Топология Кольцоимеет хорошо предсказуемое время отклика, определяемое числом рабочих станций. Чистая кольцевая топология используется редко. Вместо этого кольцевая топология играет транспортную роль в схеме метода доступа. Кольцо описывает логический маршрут, а пакет передается от одной станции к другой, совершая в итоге полный круг. В сетях TokenRingкабельная ветвь из центрального концентратора называется MAU (MultipleAccessUnit). MAU имеет внутреннее кольцо, соединяющее все подключенные к нему станции, и используется как альтернативный путь, когда оборван или отсоединен кабель одной рабочей станции. Когда кабель рабочей станции подсоединен к MAU, он просто образует расширение кольца: сигналы поступают к рабочей станции, а затем возвращаются обратно во внутреннее кольцо Звезда Звезда – это топология ЛВС (рис.4.4), в которой все рабочие станции присоединены к центральному узлу (например, к концентратору), который устанавливает, поддерживает и разрывает связи между рабочими станциями. Преимуществом такой топологии является возможность простого исключения неисправногоузла. Однако, если неисправен центральный узел, вся сеть выходит из строя. В этом случае каждый компьютер через специальный сетевой адаптер подключается отдельным кабелем к объединяющему устройству. При необходимости можно объединять вместе несколько сетей с топологией Звезда,при этом получаются разветвленные конфигурации сети. В каждой точке ветвления необходимо использовать специальные соединители (распределители, повторители или устройства доступа). Рис. 4.17 ТопологияЗвезда Примером звездообразной топологии является топология Ethernetс кабелем типаВитая пара10BASE-T, центромЗвездыобычно являетсяHub. Звездообразная топология обеспечивает защиту от разрыва кабеля. Если кабель рабочей станции будет поврежден, это не приведет к выходу из строя всего сегмента сети. Она позволяет также легко диагностировать проблемы подключения, так как каждая рабочая станция имеет свой собственный кабельный сегмент, подключенный к концентратору. Для диагностики достаточно найти разрыв кабеля, который ведет к неработающей станции. Остальная часть сети продолжает нормально работать. Однако звездообразная топология имеет и недостатки. Во-первых, она требует много кабеля. Во-вторых, концентраторы довольно дороги. В-третьих, кабельные концентраторы при большом количестве кабеля трудно обслуживать. Однако в большинстве случаев в такой топологии используется недорогой кабель типа витая пара. В некоторых случаях можно даже использовать существующие телефонные кабели. Кроме того, для диагностики и тестирования выгодно собирать все кабельные концы в одном месте. По сравнению с концентраторамиArcNetконцентраторыEthernetи MAUTokenRingдостаточно дороги. Новые подобные концентраторы включают в себя средства тестирования и диагностики, что делает их еще более дорогими.