Сетевая модель данных это произвольный граф

6.2. Сетевая модель

Сетевой подход к организации данных является расширением иерархического. В иерархических структурах запись-потомок должна иметь в точности одного предка; в сетевой структуре данных потомок может иметь любое число предков. С точки зрения теории графов сетевой модели соответствует произвольный граф (возможно имеющий циклы и петли). В узлах графа помещаются типы записей, а ребра интерпретируются как связи между типами записей.

Сетевая БД состоит из набора записей и набора связей между этими записями, а если говорить более точно, из набора экземпляров каждого типа из заданного в схеме БД набора типов записи и набора экземпляров каждого типа из заданного набора типов связи [8].

Тип связи определяется для двух типов записи: предка и потомка. Экземпляр типа связи состоит из одного экземпляра типа записи предка и упорядоченного набора экземпляров типа записи потомка. Для данного типа связи L с типом записи предка Р и типом записи потомка С должны выполняться следующие два условия:

каждый экземпляр типа Р является предком только в одном экземпляре L;

каждый экземпляр С является потомком не более, чем в одном экземпляре L.

На формирование типов связи не накладываются особые ограничения; возможны, например, следующие ситуации [8].

А. Тип записи потомка в одном типе связи L1 может быть типом записи предка в другом типе связи L2 (как в иерархии).

B. Данный тип записи Р может быть типом записи предка в любом числе типов связи.

C. Дляный тип записи Р может быть типом записи потомка в любом числе типов связи.

D. Может существовать любое число типов связи с одним и тем же типом записи предка и одним и тем же типом записи потомка; и если L1 и L2 два типа связи с одним и тем же типом записи предка Р и одним и тем же типом записи потомка С, то правила, по которым образуется родство, в разных связях могут различаться.

E. Типы записи X и Y могут быть предком и потомком в одной связи и потомком и предком — в другой.

F. Предок и потомок могут быть одного типа записи.

Простой пример сетевой схемы БД приведен на рис. 2.22.

Рис. 2.22. Пример схемы сетевой БД

Примерный набор операций при использовании сетевой модели может быть следующим [8].

Найти конкретную запись в наборе однотипных записей (инженера Петрова).

Перейти от предка к первому потомку по некою рой связи (к первому сотруднику отдела 42).

Перейти к следующему потомку в некоторой связи (от Петрова к Иванову).

Читайте также:  Настройка сетевых протоколов операционных систем

Перейти от потомка к предку по некоторой связи (найти отдел Петрова).

Переставить в другую связь и т.д.

6.3. Реляционная модель

В конце 60-х годов появились работы, в которых обсуждались возможности применения различных табличных даталогических моделей данных, т.е. возможности использования привычных и естественных способов представления данных. Наиболее значительной из них была статья сотрудника фирмы IBM д-ра Э. Кодда (Codd E.F., A Relational Model of Data for Large Shared Data Banks. CACM 13: 6, June 1970), где, вероятно, впервые был применен термин «реляционная модель данных».

Будучи математиком по образованию Э. Кодд предложил использовать для обработки данных аппарат теории множеств (объединение, пересечение, разность, декартово произведение). Он показал, что любое представление данных сводится к совокупности двумерных таблиц особого вида, известного в математике как отношение relation (англ.) [2, 5, 7, 10].

Наименьшая единица данных реляционной модели – это отдельное атомарное (неразложимое) для данной модели значение данных. Так, в одной предметной области фамилия, имя и отчество могут рассматриваться как единое значение, а в другой – как три различных значения.

Доменом называется множество атомарных значений одного и того же типа. Так, на рис. 2.23 домен пунктов отправления (назначения) – множество названий населенных пунктов, а домен номеров рейса – множество целых положительных чисел.

Смысл доменов состоит в следующем. Если значения двух атрибутов берутся из одного и того же домена, то, вероятно, имеют смысл сравнения, использующие эти два атрибута (например, для организации транзитного рейса можно дать запрос «Выдать рейсы, в которых время вылета из Москвы в Сочи больше времени прибытия из Архангельска в Москву»). Если же значения двух атрибутов берутся из различных доменов, то их сравнение, вероятно, лишено смысла: стоит ли сравнивать номер рейса со стоимостью билета?

Отношение на доменах D1, D2, . Dn (не обязательно, чтобы все они были различны) состоит из заголовка и тела. На рис. 2.23 приведен пример отношения для расписания движения самолетов.

Заголовок состоит из такого фиксированного множества атрибутов A1, A2, . An, что существует взаимно однозначное соответствие между этими атрибутами Аi и определяющими их доменами Di (i = l, 2, . n).

Тело состоит из меняющегося во времени множества кортежей, где каждый кортеж состоит в свою очередь из множества пар атрибут-значение (Ai:Vi), (i = 1, 2, . n), по одной такой паре для каждого атрибута А. в заголовке. Для любой заданной пары атрибут-значение (Ai:Vi) Vi является значением из единственного домена Di, который связан с атрибутом Аi.

Рис. 2.23. Отношение в реляционной модели

Степень отношения это число его атрибутов. Отношение степени один называют унарным, степени два – бинарным, степени три – тернарным, . а степени п – n-арным.

Читайте также:  Топология оптических сетей оборудование

Кардинальное число или мощность отношения это число его кортежей. Кардинальное число отношения изменяется во времени в отличие от его степени.

Изменение кардинального числа отношения связано с изменением состояния отношения.

Поскольку отношение – это множество, а множества по определению не содержат совпадающих элементов, то никакие два кортежа отношения не могут быть дубликатами друг друга в любой произвольно-заданный момент времени. Пусть R отношение с атрибутами А1, A2, . Ап. Говорят, что множество атрибутов К = (Аi, Аj, . Аk) отношения R является возможным ключом R тогда и только тогда, когда удовлетворяются два независимых от времени условия [5].

1. Уникальность: в произвольный заданный момент времени никакие два различных кортежа R не имеют одного и того же значения для Аi, Аj, . Ak.

2. Минимальность: ни один из атрибутов Аi, Аj, . Ak не может быть исключен из К без нарушения уникальности.

Каждое отношение обладает хотя бы одним возможным ключом, поскольку, по меньшей мере, комбинация всех его атрибутов удовлетворяет условию уникальности. Один из возможных ключей (выбранный произвольным образом) принимается за его первичный ключ. Остальные возможные ключи, если они есть, называются альтернативными ключами.

Вышеупомянутые и некоторые другие математические понятия явились теоретической базой для создания реляционных СУБД, разработки соответствующих языковых средств и программных систем, обеспечивающих их высокую производительность, и создания основ теории проектирования баз данных. Однако для массового пользователя реляционных СУБД можно использовать неформальные эквиваленты этих понятий:

Отношение – Таблица (иногда Файл),

Кортеж – Строка (иногда Запись),

Атрибут — Столбец, Поле.

При этом принимается, что «запись» означает «экземпляр записи», а «поле» означает «имя и тип поля».

Математическое определение реляционной модели приводится в [10, 17].

Отношение рассматривается как подмножество декартова произведения доменов.

Декартовым произведение доменов D1, D2, . Dk

Пример 2.4. Если D1 = A, 2>, D2 = B, С>, D3 = D>, то k = 3 и соответственно декартово произведение:

Декартово произведение позволяет получить все возможные комбинации элементов исходных множеств – элементов рассматриваемых доменов.

Отношением R на множествах D1, D2, . Dk называется подмножество декартова произведения D = = D1D2  .  Dk. Отношение R, определенное на множествах D1, D2, . Dk (причем не обязательно, чтобы эти множества были различными), есть некоторое множество кортежей арности k: (d1.i1, d2.i2, . di.ik), таких, что d1.i1 принадлежит D1, d2.i2 D2 и т.д.:

Элементами отношения являются кортежи. Арность кортежа определяет арность отношения. Поскольку отношение есть множество, то в нем не должны встречаться одинаковые кортежи и порядок кортежей в отношении несуществен.

Отношение может использоваться двояко [17]:

Читайте также:  Сообщение на тему услуги компьютерной сети

1) для представления набора объектов;

2) для представления связей между наборами объектов.

Для представления набора объектов атрибуты интерпретируются столбцами отношения. Множество допустимых значений атрибута интерпретируется соответствующим доменом. Каждый кортеж отношения выполняет роль описания отдельного объекта из набора. Отношение выполняет роль описания всего набора объектов.

Отношение также используется для представления связей между наборами объектов. В этом случае кортеж в отношении R связь между объектами. Чтобы реализовать такую ситуацию, каждому столбцу отношения ставится в соответствие ключевой атрибут соответствующего набора объектов.

Список имен атрибутов отношения называется схемой отношения. Если отношение называется R и его схема имеет атрибуты с именами А1, А2, . Ak, то схема отношения

Реляционная база данных это набор экземпляров конечных отношений. Схему реляционной БД можно представить в виде совокупности схем отношений

Другими словами – реляционная база данных – это совокупность отношений, содержащих всю информацию, которая должна храниться в БД. Однако пользователи могут воспринимать такую базу данных как совокупность таблиц. Так на рис. 2.24 показаны таблицы базы данных, построенные по инфологической модели базы данных «Питание» (прил. 4) [5].

Каждая таблица состоит из однотипных строк и имеет уникальное имя.

Строки имеют фиксированное число полей (столбцов) и значений (множественные поля и повторяющиеся группы недопустимы). Иначе говоря, в каждой позиции таблицы на пересечении строки и столбца всегда имеется в точности одно атомарное значение или ничего.

Строки таблицы обязательно отличаются друг от друга хотя бы единственным значением, что позволяет однозначно идентифицировать любую строку такой таблицы.

Столбцам таблицы однозначно присваиваются имена, и в каждом из них размещаются однородные значения данных (даты, фамилии, целые числа или денежные суммы).

Рис. 2.24. База данных «Питание» (см. прил.4)

Полное информационное содержание базы данных представляется в виде явных значений данных, и такой метод представления является единственным. В частности, не существует каких-либо специальных «связей» или указателей, соединяющих одну таблицу с другой. Так, связи между строкой с БЛ = 2 таблицы «Блюда» на рис. 2.24 и строкой с ПР = 7 таблицы продукты (для приготовления Харчо нужен Рис), представляется не с помощью указателей, а благодаря существованию в таблице «Состав» строки, в которой номер блюда равен 2, а номер продукта – 7.

При выполнении операций с таблицей ее строки и столбцы можно обрабатывать в любом порядке безотносительно к их информационному содержанию. Этому способствует наличие имен таблиц и их столбцов, а также возможность выделения любой их строки или любого набора строк с указанными признаками.

Источник

Оцените статью
Adblock
detector