3.2.2 Сетевая модель данных
Сетевая модель данных — логическая модель данных, являющаяся расширением иерархического подхода, строгая математическая теория, описывающая структурный аспект, аспект целостности и аспект обработки данных в сетевых базах данных.
Разница между иерархической моделью данных и сетевой состоит в том, что в иерархических структурах запись-потомок должна иметь в точности одного предка, а в сетевой структуре данных у потомка может иметься любое число предков.
В сетевой структуре при тех же понятиях уровень, узел, связь, каждый элемент может быть связан с любым другим элементом.
Сетевая модель СУБД во многом подобна иерархической: если в иерархической модели для каждого сегмента записи допускается только один входной сегмент при N выходных, то в сетевой модели для сегментов допускается несколько входных сегментов наряду с возможностью наличия сегментов без входов с точки зрения иерархической структуры.
Графическое изображение структуры связей сегментов такого типа моделей представляет собой сеть. Сегменты данных в сетевых БД могут иметь множественные связи с сегментами старшего уровня. При этом направление и характер связи в сетевых БД не являются столь очевидными, как в случае иерархических БД. Поэтому имена и направление связей должны идентифицироваться при описании БД.
Таким образом, под сетевой БД понимается система, поддерживающая сетевую организацию: любая запись, называемая записью старшего уровня, может содержать данные, которые относятся к набору других записей, называемых записями подчиненного уровня. Возможно обращение ко всем записям в наборе, начиная с записи старшего уровня. Обращение к набору записей реализуется по указателям.
Сетевые БД поддерживают сложные соотношения между типами данных, что делает их пригодными во многих различных приложениях. Однако пользователи таких БД ограничены связями, определенными для них разработчиками БД-приложений. Среди недостатков сетевых СУБД следует особо выделить проблему обеспечения сохранности информации в БД, решению которой уделяется повышенное внимание при проектировании сетевых БД.
Достоинства сетевой модели данных:
1)эффективное использование памяти;
Недостатки сетевой модели данных:
1) сложность доступа к элементам (навигационный принцип доступа);
2) сложно отследить смысл такой модели данных.
Сетевая модель данных изображена на рисунке 3.4.
Рисунок 3.4 – Сетевая модель данных
3.2.3 Реляционная модель данных
Реляционная модель данных — логическая модель данных, прикладная теория, описывающая структурный аспект, аспект целостности и аспект обработки данных в реляционных базах данных. Понятие реляционный связано с разработками известного американского специалиста в области систем баз данных, сотрудника фирмы IBM Е. Кодда, которым впервые был применен термин «реляционная модель данных».
Термин «реляционный» означает, что теория основана на математическом понятии отношение (relation). В качестве неформального синонима термину «отношение» часто встречается слово таблица
В течение долгого времени реляционный подход рассматривался как удобный формальный аппарат анализа баз данных, не имеющий практических перспектив, так как его реализация требовала слишком больших машинных ресурсов. Только с появлением персональных ЭВМ реляционные и близкие к ним системы стали распространяться, практически не оставив места другим моделям.
Эти модели характеризуются простотой структуры данных, удобным для пользователя табличным представлением и возможностью использования формального аппарата алгебры отношений и реляционного исчисления для обработки данных.
Реляционная модель ориентирована на организацию данных в виде двумерных таблиц. Каждая реляционная таблица представляет собой двумерный массив и обладает следующими свойствами:
- каждый элемент таблицы — один элемент данных; повторяющиеся группы отсутствуют;
- все столбцы в таблице однородные, т.е. все элементы в столбце имеют одинаковый тип (числовой, символьный и т.д.) и длину;
- каждый столбец имеет уникальное имя;
- одинаковые строки в таблице отсутствуют;
- порядок следования строк и столбцов может быть произвольным.
Таблица такого рода называется отношением.
База данных, построенная с помощью отношений, называется реляционной базой данных.
Отношения представлены в виде таблиц, строки которых соответствуют записям, а столбцы – полям.
Поле, каждое значение которого однозначно определяет соответствующую запись, называется ключевым. Если записи однозначно определяются значениями нескольких полей, то такая таблица базы данных имеет составной ключ.
Достоинства реляционной модели:
1) простота и доступность понимания конечным пользователем — единственной информационной конструкцией является таблица;
2) при проектировании реляционной БД применяются строгие правила, базирующие на математическом аппарате;
3) полная независимость данных. При изменении структуры реляционной изменения, которые требуют произвести в прикладных программах, минимальны.
Недостатки реляционной модели:
1) относительно низкая скорость доступа и большой объем внешней памяти;
2) трудность понимания структуры данных из-за появления большого кол-ва таблиц в результате логического проектирования;
3) далеко не всегда предметную область можно представить в виде совокупности таблиц.
В последнее время всё большее количество БД основываются на РМ в виду её простоты и удобства, а также большого количества программных продуктов для разработки этой СУБД. И даже недостатки реляционной модели компенсируются ростом быстродействия и ресурсов памяти современных ЭВМ.
Для курсового проекта была выбрана реляционная модель данных. Для данной предметной области она является оптимальной, поскольку обладает такими свойствами, как удобство реализации, простота. Сетевая модель не подходит из-за сложного доступа к элементам и является довольно громоздкой, что затрудняет отслеживание смысла связей между объектами. В реляционной модели связи легко определимы. В иерархической модели данных отсутствует механизм, поддерживающий связи между элементами различных поддеревьев, что также может затруднить работу.
Реляционная модель данных представлена на рисунке 3.5. Таблица Аптека содержит название аптеки, № аптеки, адрес, телефон, лицензию. Таблица Изготовитель содержит название изготовителя, телефон, адрес. В таблице Тип хранится информация о названии типа медикамента. Таблица Препараты хранит названия препаратов дату изготовления, рецепт. Таблица Медикамент хранит информацию о названии медикамента и цену. Таблица Владелец хранит Ф.И.О. владельца, дату рождения, страховку. Таблица Поступает хранит информацию о дате поступления медикамента и количестве.
Рисунок 3.5 – Реляционная модель данных
Проанализировав типы моделей данных, я пришла к выводам, что удобнее реализовывать базу данных на основе реляционной модели.
Реляционная модель данных проста и удобна для понимания, в отличии от сетевой, где очень легко запутаться в связях между объектами и не так громоздка, как иерархическая модель.
Данные в реляционной модели не зависимы и при изменении структуры не требуется переделывать всю базу, как в иерархической и сетевой моделях. Также реляционная модель рассчитана на разнообразные типы запросов, в отличии от иерархической, ориентированной на конкретные запросы.
В настоящее время для разработки реляционной СУБД существует множество программных продуктов и систем поддержки. Все это делает разработку именно такой модели данных наиболее удобной.
Сетевая модель данных
Базовые объекты модели: элемент данных, агрегат данных, запись, набор данных.
Элемент данных – это минимальная информационная единица, доступная пользователю. Аналог поля.
Агрегат данных – совокупность элементов данных, имеющих общее имя, которые могут рассматриваться как единое целое. В модели определены агрегаты двух типов: вектор и повторяющаяся группа.
Вектор – линейный набор элементов данных. Пример (Адрес: дом улица кварт. город)
Группа – совокупность векторов Пр: Стипендия – повторяющаяся группа с числом повторения 12.
Запись – совокупность агрегатов или элементов данных моделирующая некоторый класс объектов реального мира. Аналог сегмента или кортежа.
Существует понятие типа записи и экземпляра записи.
Набор – 2х уровневый граф, связывающий 2 типа записей видом 1:M. Набор отражает иерархическую связь между двумя типами записи. Родительский тип записи – владелец набора. Дочерний – член. Для любых 2-х типов записи м. б. задано любое количество наборов, которое их связывает. В рамках набора возможен последовательный просмотр экземпляров членов набора, связанных с одним экземпляром владельца набора. Ограничением набора является то, что один и тот же тип записи не может быть одновременно владельцем и членом набора.
Среди всех наборов определяется сингулярный набор, владелец которого – вся система. Обозначается входящей стрелкой. Он имеет имя набора и имя члена набора, но не определён тип записи: владелец набора. Сингулярные наборы позволяют обеспечить доступ к экземплярам отдельных типов данных.
В общем случае сетевая БД представляет совокупность взаимосвязанных наборов. Язык описания данных в сетевой модели содержит описание БД, описание записи, описание набора. Операции манипулирования данными делятся на навигационные и операции модификации.
(+)Высокие возможности по созданию сложных иерархических структур
Возможность эффективной реализации по затратам памяти и оперативности
(-) Высокая сложность и жесткость схемы БД
Сложность для понимания и обработки информации в БД
Ослаблен контроль целостности
Реляционная модель данных. Элементы модели
Определение. Элементы, информацию о которых сохраняем, называются объектами.
Определение. Совокупность однородных объектов называется набором объектов.
Определение. Свойства, характеризующие объект, называются атрибутами.
Определение. Описание логической структуры базы данных называется схемой.
Схема представляет собой таблицу типов используемых данных. Она содержит имена объектов и их атрибуты и указывает на существующую между ними связь.
Если схема содержит значения элементов данных, её называют экземпляром схемы. Запись — такая структура, в которую можно помещать конкретные значения данных. Экземпляр записи — запись с конкретным значением данных.
Термин схема используется для определения полной таблицы всех типов элементов данных и типов записей, хранимых в базе данных. Термином подсхема определяют описание данных, которое использует прикладной программист. На основе одной схемы можно составить много различных подсхем.
В основе РМД (реляционная модель данных) лежит математическая теория отношений.
Для представления данных математическое отношение используется двояко:
1). Для представления набора объектов,
2). Для представления связей между наборами объектов.
Для представления набора объектов атрибуты интерпретируются столбцами отношения. Множество допустимых значений атрибута интерпретируется соответствующим доменом. Каждый кортеж отношения выполняет роль описания отдельного объекта из набора. Само отношение выполняет роль описания всего набора объектов.
Массив данных, представленный набором реляционных структур, образует реляционную БД. Схема РБД(реляционная база данных) будет представлена набором схем отношений:
где Аi j — имя атрибута, R j — имя отношения.
Одним из основных типов зависимостей, рассматриваемых в РБД, являются функциональные зависимости.
Элементы реляционной модели