- Анализ сетевого графика
- Инструкция к сервису
- Основные определения
- Правила построения сетевой модели
- Методы оптимизации сетевого графика
- Пример построения сетевого графика
- 3. Пример решения задачи методом сетевого планирования и управления
- 3.1.Постановка задачи и построение сетевого графика
- 3.2.Расчет параметров сетевого графика
- Примеры решения задач по сетевому планированию
- Правила ввода данных
- Поиск
Анализ сетевого графика
Созданный сетевой график можно сохранить в форматах docx и png (меню Действия ). Далее можно найти параметры сетевой модели (критический путь, резервы времени, построить диаграмму Ганта и многое другое).
Инструкция к сервису
Для добавления вершины на графическое полотно необходимо использовать соответствующую фигуре кнопку Добавить . Новый объект также можно вставить, предварительно выделив его левой кнопкой мыши, а затем щелкнуть мышкой на рабочем поле. Нумерация вершин может начинаться с 0 , для этого нужно снять отметку с пункта Нумерация вершин с №1 .
Чтобы соединить вершины, их необходимо предварительно выбрать (один клик мыши по объекту), а затем нажать на кнопку Соединить .
Сетевая модель может быть представлена в табличной форме и в виде матрицы весов (матрицы расстояний). Чтобы использовать данные представления, выберите меню Операции .
Построенный граф можно сохранить в формате docx или png .
Если в качестве формы вершин используется прямоугольник, то при построении секторальной диаграммы применяется методология Microsoft Visio с отображением параметров duration, ES, EF, LS, LF, and slack.
Основные определения
- «действительная работа» – процесс, требующий затрат времени и ресурсов;
- «фиктивная работа» – логическая связь между двумя или несколькими работами, указывающая на то, что начало одной работы зависит от результатов другой. Фиктивная работа не требует затрат времени и ресурсов, продолжительность ее равна нулю.
Правила построения сетевой модели
- в сети не должно быть «тупиков», т.е., событий, от которых не начинается ни одна работа, исключая завершающее событие графика;
- В сетевом графике не должно быть «хвостовых» событий, то есть событий, которым не предшествует хотя бы одна работа, за исключением исходного.
- в сети не должно быть замкнутых контуров (рис.1);
- Любые два события должны быть непосредственно связаны не более чем одной работой.
- В сети рекомендуется иметь одно исходное и одно завершающее событие.
- Сетевой график должен быть упорядочен. То есть события и работы должны располагаться так, чтобы для любой работы предшествующее ей событие было расположено левее и имело меньший номер по сравнению с завершающим эту работу событием.
Методы оптимизации сетевого графика
Логико-математическое описание, формирование планов и управляющих воздействий осуществляется на базе использования особого класса моделей, называемых сетевыми моделями.
После построения и расчета сетевого графика (определения его параметров), выполнения анализа графика, заключающегося в оценке его целесообразности и структуры, оценке загрузки исполнителей, оценке вероятности наступления завершающего события в заданный срок, следует приступать к оптимизации сетевого графика. Процедура оптимизации заключается в приведение графика в соответствие с заданными сроками выполнения работ, возможностями подрядных организаций и т.д. В общем случае под оптимизацией следует понимать процесс улучшения организации выполнения работ.
- Оптимизация сетевой модели по критерию «число исполнителей». Заполняется столбец Количество исполнителей Ч ►
- Оптимизация сетевой модели по критерию «время – стоимость» ( время — затраты ). В случае известных коэффициентов затрат на ускорение работ заполняется только этот столбец h(i,j) . Иначе, заполняются столбцы tопт (Нормальный режим), Минимальное время работ, tmin (Ускоренный режим), Нормальная стоимость, Cн и Срочная стоимость, Cc .
Пример построения сетевого графика
Используя полученные данные, мы можем найти основные характеристики сетевой модели табличным методом, критический путь и его продолжительность.
Таблица – Табличный метод расчета сетевого графика.
КПР | Код работы (i,j) | Продолжительность работы t(i, j) | Ранние сроки | Поздние сроки | Резервы времени | |||
tрн(i,j) | tро(i,j) | tпн(i,j) | tпо(i,j) | Rп | Rc | |||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
0 | 1,2 | 7 | 0 | 7 | 0 | 7 | 0 | 0 |
0 | 1,4 | 4 | 0 | 4 | 17 | 21 | 17 | 8 |
0 | 1,5 | 3 | 0 | 3 | 19 | 22 | 19 | 0 |
1 | 2,3 | 3 | 7 | 10 | 7 | 10 | 0 | 0 |
1 | 2,8 | 13 | 7 | 20 | 19 | 32 | 12 | 12 |
1 | 3,4 | 2 | 10 | 12 | 19 | 21 | 9 | 0 |
1 | 3,6 | 13 | 10 | 23 | 10 | 23 | 0 | 0 |
2 | 4,7 | 5 | 12 | 17 | 21 | 26 | 9 | 0 |
1 | 5,7 | 4 | 3 | 7 | 22 | 26 | 19 | 10 |
1 | 6,8 | 9 | 23 | 32 | 23 | 32 | 0 | 0 |
2 | 7,8 | 6 | 17 | 23 | 26 | 32 | 9 | 9 |
Таким образом, работы критического пути (1,2),(2,3),(3,6),(6,8). Продолжительность критического пути Ткр=32.
Рисунок — Масштабный график сетевой модели
Для оценки вероятности выполнения всего комплекса работ за 30 дней нам необходима следующая формула: P(tкр где Z=(Т-Ткр)/Sкр
Z- нормативное отклонение случайной величины, Sкр – среднеквадратическое отклонение, вычисляемое как корень квадратный из дисперсии продолжительности критического пути. Соответствие между Z и Ф(Z) представлено в таблице.
Таблица — Таблица стандартного нормального распределения.
Z | F(Z) | Z | F(Z) | Z | F(Z) |
0 | 0.0000 | 1.0 | 0.6827 | 2.0 | 0.9643 |
0.1 | 0.0797 | 1.1 | 0.7287 | 2.1 | 0.9722 |
0.2 | 0.1585 | 1.2 | 0.7699 | 2.2 | 0.9786 |
0.3 | 0.2358 | 1.3 | 0.8064 | 2.3 | 0.9836 |
0.4 | 0.3108 | 1.4 | 0.8385 | 2.4 | 0.9876 |
0.5 | 0.3829 | 1.5 | 0.8664 | 2.5 | 0.9907 |
0.6 | 0.4515 | 1.6 | 0.8904 | 2.6 | 0.9931 |
0.7 | 0.5161 | 1.7 | 0.9104 | 2.7 | 0.9949 |
0.8 | 0.5763 | 1.8 | 0.9281 | 2.8 | 0.9963 |
0.9 | 0.6319 | 1.9 | 0.9545 | 2.9 | 0.9973 |
Критический путь проходит по работам (1,2)(2,3)(3,6)(3,8).
Дисперсия критического пути:
S 2 (Lкр)= S 2 (1,2)+ S 2 (2,3)+ S 2 (3,6)+S 2 (6,8)=1+0,25+4+1=6,25
S(Lкр)=2,5
p(tкр<30)=0,5+0,5Ф((30-32)/2,5)=0,5-0,5Ф(0,8) = 0,5-0,5*0,5763=0,5-0,28815=0,213
Вероятность того, что весь комплекс работ будет выполнен не более чем за 30 дней, составляет 21,3%.
Для определения максимально возможного срока выполнения всего комплекса работ с надежностью 95% будем использовать следующую формулу: T=Ткр+Z*Sкр Для решения поставленной задачи найдем значение аргумента Z, которое соответствует заданной вероятности 95% (значению графы Ф(Z) 0,9545*100% в таблице 5 соответствует Z=1,9).
T=32+1,9*2,5=36,8
Максимальный срок выполнения всего комплекса работ при заданном уровне вероятности 95% составляет всего 36,8 дня.
3. Пример решения задачи методом сетевого планирования и управления
3.1.Постановка задачи и построение сетевого графика
Издатель имеет контракт с автором на издание его книги. Ниже представлена последовательность (упрощенная) процессов, приводящая к реализации проекта издания книги. Необходимо разработать сеть для этого проекта.
А: Прочтение рукописи редактором
В: Пробная верстка отдельных страниц книги
С: Разработка обложки книги
Е: Просмотр автором редакторских правок и сверстанных страниц
F: Верстка книги (создание макета книги)
G: Проверка автором макета книги
H: Проверка автором иллюстраций
I: Подготовка печатных форм
J:Печать и брошюровка книги
На рис.3.1 показана сеть, представляющая взаимосвязь процессов данного проекта. Фиктивный процесс (2, 3) введен для того, чтобы «развести» конкурирующие процессы А и В. Номера узлов сети возрастают в направлении выполнения проектов.
3.2.Расчет параметров сетевого графика
Определение полных путей и нахождение критического пути.
Найдем полные пути и их продолжительности:
1 путь: 1-2-3-4-6-7-8-9, его продолжительность: 3+0+2+2+2+2+4=15
2 путь: 1-3-4-6-7-8-9, его продолжительность: 2+2+2+2+2+4=14
3 путь: 1-5-7-8-9, его продолжительность: 3+1+2+4=10
4 путь: 1-8-9, его продолжительность: 4+4=8
Критическимв данном случае будет путь 1-2-3-4-6-7-8-9, т.к. его продолжительность максимальна и равна 15. Lкр = 1-2-3-4-6-7-8-9,t(Lкр) = 15.
Для каждого события определим ранний и поздний срок свершения события.
Ранний срок свершения события– это максимальный из путей, предшествующий этому событию.
Поздний срок свершения свершения события Тп(i) определяется разностью между Ткр и длинной максимального из последующих путей.
Резерв времени события равен разности раннего и позднего срока свершения события: R(i) = Тп(i)-Тр(i)
Определяем ранние и поздние сроки начала и окончания работ:
Определяем ранний срок начала работ:
Трн( i, j) = Тр(i)
Определяем ранний срок окончания работ:
Тро( i, j) = Тр(i) + Тij
Тро(8, 9) = Тр(8) + Т89 = 11+4 = 15
Определяем поздний срок начала работ:
Тпн(i, j) = Тп(j) – Тij
Тпн(1, 5) = Тп(5) – Т 15= 13-3 = 10
Тпн(1, 8) = Тп(8) – Т18 = 16-4 = 12
Тпн(4, 6) = Тп(6) – Т 46= 12-2 = 10
Тпн(6, 7) = Тп(7) – Т67 = 14-2 = 12
Тпн(5, 7) = Тп(7) – Т57 = 14-1 = 13
Тпн(7, 8) = Тп(8) – Т 78= 16-2 = 14
Тпн(8, 9) = Тп(9) – Т89 = 20-4 = 16
Определяем поздний срок окончания работ:
Тпо(i, j) = Тп(j)
Определяем полный резерв времени работ:
R(i, j) = Tп(j) – Tp(i) – Tij
R(1, 2) = Тп(2) – Тр(1) – Т12 = 8-0-3 = 5
R(1, 3) = Тп(3) – Тр(1) – Т13 = 8-0-2 = 6
R(1, 5) = Тп(5) – Тр(1) – Т15 =13-0-3 = 10
R(1, 8) = Тп(8) – Тр(1) – Т18 =16-0-4 =12
R(2, 3) = Тп(3) – Тр(2) – Т23 = 8-3-0 = 5
R(3, 4) = Тп(4) – Тр(3) – Т34 =10-3-2 = 5
R(4, 6) = Тп(6) – Тр(4) – Т46 =12-5-2 = 5
R(6, 7) = Тп(7) – Тр(6) – Т67 =14-7-2 = 5
R(5, 7) = Тп(7) – Тр(5) – Т57 =14-3-1 = 10
R(7, 8) = Тп(8) – Тр(7) – Т78 =16-9-2 = 5
R(8, 9) = Тп(9) – Тр(8) – Т89 =20-11-4 = 5
Примеры решения задач по сетевому планированию
- Модели сетевого планирования и управления
Построить график данного комплекса работ.
Требуется рассчитать:- временные характеристики сетевого графика при нормальном режиме работ;
- найти критический путь;
- полные резервы времени;
- временные характеристики сетевого графика при срочном режиме работ;
- найти критический путь;
- полные резервы времени;
- определить стоимость работ.
- Табличный метод расчета параметров сетевого графика
Определить временные параметры сетевого графика на рисунке, пользуясь табличным методом. - Графический метод расчета параметров сетевого графика
- Расчет параметров сетевого графика методом потенциалов.
- Различные варианты анализа сетевых графиков
Имеются данные о возможности сокращения продолжительности работы за счет стимулирования труда и увеличения других затрат. На основе статистических характеристик проводится анализ сетевой модели. - Оптимизация сетевой модели комплекса производственных работ
- Построение сетевого графика по таблице
Рассчитать параметры сетевого графика мероприятия по совершенствованию системы управления. Сетевая модель задана таблично (Таблица). Продолжительность выполнения работ дана в виде минимальной и максимальной оценок. Требуется:- Вычислить табличным методом все основные характеристики работ и событий, найти критический путь и его продолжительность.
- Построить масштабный сетевой график.
- Оценить вероятность выполнения всего комплекса работ за 30 дней.
- Оценить максимально возможный срок выполнения всего комплекса работ с вероятностью 95%.
- Коэффициент сложности сетевого графика
- Коэффициент напряженности.
- Как решать, если задана стоимость работ?
По данным таблицы необходимо: 1) построить сетевой график; 2) определить критический путь и стоимость проекта при минимально возможных значениях продолжительности всех работ; 3) найти минимальную стоимость проекта при том же сроке его завершения; 4) рассчитать и построить оптимальную зависимость стоимости проекта от продолжительности его выполнения, используя в качестве первоначального варианта сетевого графика.
Правила ввода данных
Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus .
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).
Поиск
Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus .
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).