- Анализ сетевого графика
- Инструкция к сервису
- Основные определения
- Правила построения сетевой модели
- Методы оптимизации сетевого графика
- Пример построения сетевого графика
- 1.3.5. Пример построения и расчета сетевой модели
- 1.4. Контрольные вопросы
- Правила построения сетевых графиков
- Сетевые графики типа «вершины — работы».
- Сетевые графики типа «вершины-события».
Анализ сетевого графика
Созданный сетевой график можно сохранить в форматах docx и png (меню Действия ). Далее можно найти параметры сетевой модели (критический путь, резервы времени, построить диаграмму Ганта и многое другое).
Инструкция к сервису
Для добавления вершины на графическое полотно необходимо использовать соответствующую фигуре кнопку Добавить . Новый объект также можно вставить, предварительно выделив его левой кнопкой мыши, а затем щелкнуть мышкой на рабочем поле. Нумерация вершин может начинаться с 0 , для этого нужно снять отметку с пункта Нумерация вершин с №1 .
Чтобы соединить вершины, их необходимо предварительно выбрать (один клик мыши по объекту), а затем нажать на кнопку Соединить .
Сетевая модель может быть представлена в табличной форме и в виде матрицы весов (матрицы расстояний). Чтобы использовать данные представления, выберите меню Операции .
Построенный граф можно сохранить в формате docx или png .
Если в качестве формы вершин используется прямоугольник, то при построении секторальной диаграммы применяется методология Microsoft Visio с отображением параметров duration, ES, EF, LS, LF, and slack.
Основные определения
- «действительная работа» – процесс, требующий затрат времени и ресурсов;
- «фиктивная работа» – логическая связь между двумя или несколькими работами, указывающая на то, что начало одной работы зависит от результатов другой. Фиктивная работа не требует затрат времени и ресурсов, продолжительность ее равна нулю.
Правила построения сетевой модели
- в сети не должно быть «тупиков», т.е., событий, от которых не начинается ни одна работа, исключая завершающее событие графика;
- В сетевом графике не должно быть «хвостовых» событий, то есть событий, которым не предшествует хотя бы одна работа, за исключением исходного.
- в сети не должно быть замкнутых контуров (рис.1);
- Любые два события должны быть непосредственно связаны не более чем одной работой.
- В сети рекомендуется иметь одно исходное и одно завершающее событие.
- Сетевой график должен быть упорядочен. То есть события и работы должны располагаться так, чтобы для любой работы предшествующее ей событие было расположено левее и имело меньший номер по сравнению с завершающим эту работу событием.
Методы оптимизации сетевого графика
Логико-математическое описание, формирование планов и управляющих воздействий осуществляется на базе использования особого класса моделей, называемых сетевыми моделями.
После построения и расчета сетевого графика (определения его параметров), выполнения анализа графика, заключающегося в оценке его целесообразности и структуры, оценке загрузки исполнителей, оценке вероятности наступления завершающего события в заданный срок, следует приступать к оптимизации сетевого графика. Процедура оптимизации заключается в приведение графика в соответствие с заданными сроками выполнения работ, возможностями подрядных организаций и т.д. В общем случае под оптимизацией следует понимать процесс улучшения организации выполнения работ.
- Оптимизация сетевой модели по критерию «число исполнителей». Заполняется столбец Количество исполнителей Ч ►
- Оптимизация сетевой модели по критерию «время – стоимость» ( время — затраты ). В случае известных коэффициентов затрат на ускорение работ заполняется только этот столбец h(i,j) . Иначе, заполняются столбцы tопт (Нормальный режим), Минимальное время работ, tmin (Ускоренный режим), Нормальная стоимость, Cн и Срочная стоимость, Cc .
Пример построения сетевого графика
Используя полученные данные, мы можем найти основные характеристики сетевой модели табличным методом, критический путь и его продолжительность.
Таблица – Табличный метод расчета сетевого графика.
КПР | Код работы (i,j) | Продолжительность работы t(i, j) | Ранние сроки | Поздние сроки | Резервы времени | |||
tрн(i,j) | tро(i,j) | tпн(i,j) | tпо(i,j) | Rп | Rc | |||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
0 | 1,2 | 7 | 0 | 7 | 0 | 7 | 0 | 0 |
0 | 1,4 | 4 | 0 | 4 | 17 | 21 | 17 | 8 |
0 | 1,5 | 3 | 0 | 3 | 19 | 22 | 19 | 0 |
1 | 2,3 | 3 | 7 | 10 | 7 | 10 | 0 | 0 |
1 | 2,8 | 13 | 7 | 20 | 19 | 32 | 12 | 12 |
1 | 3,4 | 2 | 10 | 12 | 19 | 21 | 9 | 0 |
1 | 3,6 | 13 | 10 | 23 | 10 | 23 | 0 | 0 |
2 | 4,7 | 5 | 12 | 17 | 21 | 26 | 9 | 0 |
1 | 5,7 | 4 | 3 | 7 | 22 | 26 | 19 | 10 |
1 | 6,8 | 9 | 23 | 32 | 23 | 32 | 0 | 0 |
2 | 7,8 | 6 | 17 | 23 | 26 | 32 | 9 | 9 |
Таким образом, работы критического пути (1,2),(2,3),(3,6),(6,8). Продолжительность критического пути Ткр=32.
Рисунок — Масштабный график сетевой модели
Для оценки вероятности выполнения всего комплекса работ за 30 дней нам необходима следующая формула: P(tкр где Z=(Т-Ткр)/Sкр
Z- нормативное отклонение случайной величины, Sкр – среднеквадратическое отклонение, вычисляемое как корень квадратный из дисперсии продолжительности критического пути. Соответствие между Z и Ф(Z) представлено в таблице.
Таблица — Таблица стандартного нормального распределения.
Z | F(Z) | Z | F(Z) | Z | F(Z) |
0 | 0.0000 | 1.0 | 0.6827 | 2.0 | 0.9643 |
0.1 | 0.0797 | 1.1 | 0.7287 | 2.1 | 0.9722 |
0.2 | 0.1585 | 1.2 | 0.7699 | 2.2 | 0.9786 |
0.3 | 0.2358 | 1.3 | 0.8064 | 2.3 | 0.9836 |
0.4 | 0.3108 | 1.4 | 0.8385 | 2.4 | 0.9876 |
0.5 | 0.3829 | 1.5 | 0.8664 | 2.5 | 0.9907 |
0.6 | 0.4515 | 1.6 | 0.8904 | 2.6 | 0.9931 |
0.7 | 0.5161 | 1.7 | 0.9104 | 2.7 | 0.9949 |
0.8 | 0.5763 | 1.8 | 0.9281 | 2.8 | 0.9963 |
0.9 | 0.6319 | 1.9 | 0.9545 | 2.9 | 0.9973 |
Критический путь проходит по работам (1,2)(2,3)(3,6)(3,8).
Дисперсия критического пути:
S 2 (Lкр)= S 2 (1,2)+ S 2 (2,3)+ S 2 (3,6)+S 2 (6,8)=1+0,25+4+1=6,25
S(Lкр)=2,5
p(tкр<30)=0,5+0,5Ф((30-32)/2,5)=0,5-0,5Ф(0,8) = 0,5-0,5*0,5763=0,5-0,28815=0,213
Вероятность того, что весь комплекс работ будет выполнен не более чем за 30 дней, составляет 21,3%.
Для определения максимально возможного срока выполнения всего комплекса работ с надежностью 95% будем использовать следующую формулу: T=Ткр+Z*Sкр Для решения поставленной задачи найдем значение аргумента Z, которое соответствует заданной вероятности 95% (значению графы Ф(Z) 0,9545*100% в таблице 5 соответствует Z=1,9).
T=32+1,9*2,5=36,8
Максимальный срок выполнения всего комплекса работ при заданном уровне вероятности 95% составляет всего 36,8 дня.
1.3.5. Пример построения и расчета сетевой модели
Исходные данные варианта лабораторной работы включают название и продолжительность каждой работы (табл. 1.1), а также описание упорядочения работ.
- Работы C, I, Gявляются исходными работами проекта, которые могут выполняться одновременно.
- Работы E иAследуют за работойC.
- Работа Hследует за работойI.
- Работы D иJследуют за работойG.
- Работа Bследует за работойE.
- Работа Kследует за работамиAиD, но не может начаться прежде, чем не завершится работаH.
- Работа Fследует за работойJ.
На рис.1.4 представлена сетевая модель, соответствующая данному упорядочению работ. Каждому событию присвоен номер, что позволяет в дальнейшем использовать не названия работ, а их коды (см. табл. 1.2). Численные значения временных параметров событий сети вписаны в соответствующие секторы вершин сетевого графика, а временные параметры работ сети представлены в табл. 1.3. Таблица 1.2 Описание сетевой модели с помощью кодирования работ
Номера событий | Код работы | Продолжительность | |
начального | конечного | работы | |
1 | 2 | (1,2) | 4 |
1 | 3 | (1,3) | 3 |
1 | 4 | (1,4) | 5 |
2 | 5 | (2,5) | 7 |
2 | 6 | (2,6) | 10 |
3 | 6 | (3,6) | 8 |
4 | 6 | (4,6) | 12 |
4 | 7 | (4,7) | 9 |
5 | 8 | (5,8) | 8 |
6 | 8 | (6,8) | 10 |
7 | 8 | (7,8) | 11 |
Рис.1.4. Сетевая модель Таблица 1.3 Временные параметры работ
1,2 | 4 | 0 | 4 | 3 | 7 | 3 | 0 |
1,3 | 3 | 0 | 3 | 6 | 9 | 6 | 0 |
1,4 | 5 | 0 | 5 | 0 | 5 | 0 | 0 |
2,5 | 7 | 4 | 11 | 12 | 19 | 8 | 0 |
2,6 | 10 | 4 | 14 | 7 | 17 | 3 | 3 |
3,6 | 8 | 3 | 11 | 9 | 17 | 6 | 6 |
4,6 | 12 | 5 | 17 | 5 | 17 | 0 | 0 |
4,7 | 9 | 5 | 14 | 7 | 16 | 2 | 0 |
5,8 | 8 | 11 | 19 | 19 | 27 | 8 | 8 |
6,8 | 10 | 17 | 27 | 17 | 27 | 0 | 0 |
7,8 | 11 | 14 | 25 | 16 | 27 | 2 | 2 |
1.4. Контрольные вопросы
1.4.1. Зачетный минимум
- Определение события, виды событий, практические примеры событий, обозначение событий на графике, временные параметры событий.
- Определение работы, классификация работ с приведением соответствующих практических примеров, обозначение работ на графике, временные параметры работ.
- Правила построения сетевых графиков.
- Определение пути в сетевом графике, виды путей, важность определения критического пути.
- Умение вычислять временные параметры событий и работ.
1.4.2. Дополнительные вопросы
- Почему при расчете раннего срока свершения события iвыбираютмаксимальнуюиз сумм ?
- Почему при расчете позднего срока свершения события iвыбираютминимальнуюиз разностей ?
- Какова взаимосвязь полного и свободного резервов работы?
- Как можно найти критических путь в сетевой модели, без непосредственного суммирования длительностей работ?
Часть 2. ОПТИМИЗАЦИЯ СЕТЕВЫХ МОДЕЛЕЙ ПО КРИТЕРИЮ «МИНИМУМ ИСПОЛНИТЕЛЕЙ» 2.1. ЦЕЛЬ РАБОТЫ Знакомство с методикой и приобретение навыков проведения оптимизации сетевых моделей по критерию «Минимум исполнителей». 2.2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ 1. Согласно номеру своего варианта получите данные о количество исполнителей, занятых на каждой работе сетевой модели, и ограничение по численности Nодновременно занятых в работе исполнителей. 2. Постройте в отчете графики привязки и загрузки, используя нормальные длительности работ сети — (см. п.2.3.1), и покажите их преподавателю. 3. Проверьте правильность построения графиков привязки и загрузки с помощью компьютера, в случае необходимости выявите и устраните ошибки. 4. Используя компьютерную программу, проведите уменьшение численности исполнителей, одновременно занятых на работах сети, до требуемого уровня N. 5. Отчет по лабораторной работе должен содержать:
- номер варианта;
- исходные данные варианта;
- графики привязки и загрузки до проведения оптимизации загрузки;
- графики привязки и загрузки после проведения оптимизации загрузки (возможно использование пунктирных линий на первоначально построенных графиках для отображение изменений в привязке работ и загрузке сети, вызванных сдвигами работ);
- коды работ, сдвинутых в процессе оптимизации, и время их сдвига.
Правила построения сетевых графиков
Для построения сетевого графика необходимо выявить последовательность и взаимосвязь работ: какие работы необходимо выполнить, и какие условия обеспечить, чтобы можно было начать данную работу, какие работы можно и целесообразно выполнять параллельно с данной работой, какие работы можно начать после окончания данной работы. Эти вопросы позволяют выявить технологическую взаимосвязь между отдельными работами, обеспечивают логическое построение сетевого графика и его соответствие моделируемому комплексу работ.
Уровень детализации сетевого графика зависит от сложности строящегося объекта, количества используемых ресурсов, объёмов работ и продолжительности строительства.
Имеется два типа сетевых графиков:
Сетевые графики типа «вершины — работы».
Элементами такого графика являются работы и зависимости. Работа представляет собой определенный производственный процесс, требующий затрат времени и ресурсов для его выполнения, и изображается прямоугольником. Зависимость (фиктивная работа) показывает организационно-технологическую связь между работами, не требующую затрат времени и ресурсов, изображается стрелкой. Если между работами имеется организационный или технологический перерыв, то на зависимости указывается длительность этого перерыва. Пример сетевого графика «вершины — работы» приведен на рис. 6.1.
Рис. 6.1. Сетевой график типа «вершины — работы»
Если работа сетевого графика «вершины — работы» не имеет предшествующих работ, то она является исходной работой этого графика. Если работа не имеет последующих работ, то она является завершающей работой сетевого графика. В сетевом графике «вершины — работы» не должно быть замкнутых контуров (циклов), т.е. зависимости не должны возвращаться в ту работу, из которой они вышли.
Сетевые графики типа «вершины-события».
Элементами такого типа графиков являются работы, зависимости и события. Работа изображается сплошной стрелкой, зависимость – пунктирной. Событие представляет собой результат одной или нескольких работ, необходимый и достаточный для начала одной или нескольких последующих работ, и изображается кружком.
В сетевых графиках этого типа каждая работа находится между двумя событиями: начальным, из которого она выходит, и конечным, в которое она входит. События сетевого графика нумеруются, поэтому каждая работа имеет код, состоящий из номеров её начального и конечного события. Например, на рис. 6.2 работы закодированы как (1,2); (2,3); (2,4); (4,5).
Рис.6.2. Сетевой график «вершины — события»
Если событие сетевого графика «вершины-события» не имеет предшествующих работ, то оно является исходным событием этого графика. Следующие непосредственно за ним работы называются исходными. Если событие не имеет последующих работ, то оно является завершающим событием. Входящие в него работы называются завершающими.
Для правильного отображения взаимосвязей между работами необходимо соблюдать следующие основные правила построения сетевого графика «вершины-события»:
1. При изображении одновременно или параллельно выполняемых работ (например, работ «Б» и «В» на рис.6.2) вводятся зависимость (3,4) и дополнительное событие (3).
2. Если для начала работы «Г» необходимо выполнить работы «А» и «Б», а для начала работы «В» – только работу «А», то вводится зависимость и дополнительное событие (рис.6.3.).
Рис.6.3. Изображение зависимости между работами
3. В сетевом графике не д.б. замкнутых контуров (циклов), т.е. цепочки работ, возвращающейся к тому событию, из которого они вышли (рис.6.4).
Рис. 6.4. Пример замкнутого контура (2,4,3,2)
4. В сетевом графике при поточной организации строительства вводятся дополнительные события и зависимости (рис. 6.5.).
Рис. 6 5. Пример изображения потоков однородных работ