Сетевой протокол айпи представляет собой

📑 Протокол сетевого уровня — IP

Протокол IP — основной протокол стека протоколов TCP/IP и основной протокол сетевого уровня. Именно он отвечает за передачу информации по сети и между отдельными сетями (подсетями). В его основе заложен дейтаграммный метод, который не гарантирует доставку пакета.

Функции протокола IP определены в стандарте RFC-791 следующим образом:

“Протокол IP обеспечивает передачу блоков данных, называемых дейтаграммами, от отправителя к получателям, где отправители и получатели являются компьютерами, идентифицируемыми адресами фиксированной длины (IP-адресами). Протокол IP обеспечивает при необходимости также фрагментацию и сборку дейтаграмм для передачи данных через сети с малым размером пакетов”.

Протокол IP является ненадежным протоколом без установления соединения. Это означает, что протокол IP не подтверждает доставку данных, не контролирует целостность полученных данных и не производит операцию квитирования (handshaking) – обмена служебными сообщениями, подтверждающими установку соединения с узлом назначения и его готовность к приему данных.

Протокол IP обрабатывает каждую дейтаграмму как независимую единицу, не имеющую связи ни с какими другими дейтаграммами в Интернет.

После того, как дейтаграмма отправляется в сеть, ее дальнейшая судьба никак не контролируется отправителем (на уровне протокола IP). Если дейтаграмма не может быть доставлена, она уничтожается. Узел, уничтоживший дейтаграмму, может оправить по обратному адресу ICMP-сообщение о причине сбоя.

Гарантию правильной передачи данных предоставляют протоколы вышестоящего уровня (например, протокол TCP или сервисы прикладного уровня), которые имеют для этого необходимые механизмы.

Одна из основных задач, решаемых протоколом IP, – маршрутизация дейтаграмм, т.е. определение пути следования дейтаграммы от одного узла сети к другому на основании адреса получателя.

Общий сценарий работы модуля IP на каком-либо узле сети, принимающего дейтаграмму из сети, не зависимо от конкретной реализации, то-есть операционной системы, таков:

  • с одного из интерфейсов уровня доступа к среде передачи (например, с Ethernet-интерфейса) в модуль реализующий протокол IP поступает дейтаграмма;
  • модуль IP анализирует заголовок дейтаграммы;
  • если пунктом назначения дейтаграммы является данный компьютер:
    • если дейтаграмма является фрагментом большей дейтаграммы, ожидаются остальные фрагменты, после чего из них собирается исходная большая дейтаграмма;
    • из дейтаграммы извлекаются данные и направляются на обработку одному из протоколов вышележащего уровня (какому именно – указывается в заголовке дейтаграммы);
    • если ретрансляция разрешена, то-есть узел выполняет маршрутизирующие функции, то определяются следующий узел сети, на который должна быть переправлена дейтаграмма для доставки ее по назначению, и интерфейс нижнего уровня, после чего дейтаграмма передается на нижний уровень этому интерфейсу для отправки; при необходимости может быть произведена фрагментация дейтаграммы;
    • если же дейтаграмма ошибочна или по каким-либо причинам не может быть доставлена, она уничтожается; при этом, как правило, отправителю дейтаграммы отсылается ICMP-сообщение об ошибке.

    При получении данных от вышестоящего уровня для отправки их по сети IP-модуль формирует дейтаграмму с этими данными, в заголовок которой заносятся адреса отправителя и получателя (также полученные от транспортного уровня) и другая информация; после чего выполняются следующие шаги:

    • если дейтаграмма предназначена этому же узлу, из нее извлекаются данные и направляются на обработку одному из протоколов транспортного уровня (какому именно – указывается в заголовке дейтаграммы);
    • если дейтаграмма не направлена ни на один из IP-адресов данного узла, то определяются следующий узел сети, на который должна быть переправлена дейтаграмма для доставки ее по назначению, и интерфейс нижнего уровня, после чего дейтаграмма передается на нижний уровень этому интерфейсу для отправки; при необходимости может быть произведена фрагментация дейтаграммы;
    • если же дейтаграмма ошибочна или по каким-либо причинам не может быть доставлена, она уничтожается.

    Формат заголовка дейтаграммы IP (v4):

     
    Октет 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
    0 Версия IHL Тип обслуживания Длина пакета
    4 Идентификатор Флаги Смещение фрагмента
    8 Время жизни (TTL) Протокол Контрольная сумма заголовка
    12 IP-адрес отправителя
    16 IP-адрес получателя
    20 Параметры (от 0 до 10-и 32-х битных слов)
    Данные
    • Версия — для IPv4 значение поля должно быть равно 4.
    • IHL — (Internet Header Length) длина заголовка IP-пакета в 32-битных словах (dword). Именно это поле указывает на начало блока данных (англ. payload — полезный груз) в пакете. Минимальное корректное значение для этого поля равно 5.
    • Тип обслу́живания (Type of Service, акроним TOS) — байт, содержащий набор критериев, определяющих тип обслуживания IP-пакетов. Поле в заголовке пакета IPv4, которое с годами приобретало различные цели, и описывалось почти в пяти RFC. В настоящее время TOS поле имеет 6 bit поля DiffServ Code Point (DSCP) и 2-bit поля Explicit Congestion Notification.Тип обслуживания позволяет приоритизировать IP-трафик на сетевых маршрутизаторах, с целью обеспечения высокого качества передачи данныхБайт побитно (0 – старший, 7 – младший):
      • 0-2 — приоритет (precedence) данного IP-сегмента
      • 3 — требование ко времени задержки (delay) передачи IP-сегмента (0 — нормальная, 1 — низкая задержка)
      • 4 — требование к пропускной способности (throughput) маршрута, по которому должен отправляться IP-сегмент (0 — низкая, 1 — высокая пропускная способность)
      • 5 — требование к надежности (reliability) передачи IP-сегмента (0 — нормальная, 1 — высокая надежность)
      • 6-7 — ECN — явное сообщение о задержке (управление IP-потоком).
      • Протокол обмена управляющими сообщениями ICMP
      • DSL — высокоскоростная цифровая линия до пользователя (Digital Subscriber Line)
      • Протокол транспортного уровня — UDP
      • Основные сведения о DNS. Зоны и серверы DNS.
      • Общие принципы функционирования NAT
      • Протокол сетевого уровня — IP
      • Сетевой уровень модели OSI. Общие понятия.
      • Основные понятия DHCP
      • Виртуальная локальная сеть — VLAN (Virtual Local Area Network)
      • Устройства канального уровня модели OSI (L2)
      • Канальный уровень модели OSI. Общие понятия.
      • Физический уровень модели OSI
      • Что такое QoS?
      • Файлы и записи зон DNS
      • Открытые DNS сервера
      • Основные сведения о DNS. Введение.
      • Коды ответа сервера по протоколу HTTP
      • Модели OSI и TCP/IP
      • Протоколы ARP и RARP
      • Основные понятия WWW
      • Что такое CSS?
      • WebDAV

      Источник

      Что такое TCP/IP и как работает этот протокол

      TCP/IP

      Протокол TCP/IP – это целая сетевая модель, описывающая способ передачи данных в цифровом виде. На правилах, включенных в нее, базируется работа интернета и локальных сетей независимо от их назначения и структуры.

      Что такое TCP/IP

      Произошло наименование протокола от сокращения двух английских понятий – Transmission Control Protocol и Internet Protocol. Набор правил, входящий в него, позволяет обрабатывать как сквозную передачу данных, так и другие детали этого механизма. Сюда входит формирование пакетов, способ их отправки, получения, маршрутизации, распаковки для передачи программному обеспечению.

      Что такое TCP/IP

      Стек протоколов TCP/IP был создан в 1972 году на базе NCP (Network Control Protocol), в январе 1983 года он стал официальным стандартом для всего интернета. Техническая спецификация уровней взаимодействия описана в документе RFC 1122.

      В составе стека есть и другие известные протоколы передачи данных – UDP, FTP, ICMP, IGMP, SMTP. Они представляют собой частные случаи применения технологии: например, у SMTP единственное предназначение заключается в отправке электронных писем.

      Уровни модели TCP/IP

      Протокол TCP/IP основан на OSI и так же, как предшественник, имеет несколько уровней, которые и составляют его архитектуру. Всего выделяют 4 уровня – канальный (интерфейсный), межсетевой, транспортный и прикладной.

      Уровни модели TCP/IP

      Канальный (сетевой интерфейс)

      Аппаратный уровень обеспечивает взаимодействие сетевого оборудования Ethernet и Wi-Fi. Он соответствует физическому из предыдущего стандарта OSI. Здесь задача состоит в кодировании информации, ее делению на пакеты и отправке по нужному каналу. Также измеряются параметры сигнала вроде задержки ответа и расстояния между хостами.

      Межсетевой (Internet Layer)

      Интернет состоит из множества локальных сетей, объединенных между собой как раз за счет протокола связи TCP/IP. Межсетевой уровень регламентирует взаимодействие между отдельными подсетями. Маршрутизация осуществляется путем обращения к определенному IP-адресу с использованием маски.

      Если хосты находятся в одной подсети, маркируемой одной маской, данные передаются напрямую. В противном случае информация «путешествует» по целой цепочке промежуточных звеньев, пока не достигнет нужной точки. Назначение IP-адреса проводится по стандарту IPv4 или IPv6 (они не совместимы между собой).

      Транспортный уровень (Transport Layer)

      Следующий уровень отвечает за контроль доставки, чтобы не возникало дублей пакетов данных. В случае обнаружения потерь или ошибок информация запрашивается повторно. Такой подход дает возможность полностью автоматизировать процессы независимо от скорости и качества связи между отдельными участками интернета или внутри конкретной подсети.

      Протокол TCP отличается большей достоверностью передачи данных по сравнению с тем же UDP, который подходит только для передачи потокового видео и игровой графики. Там некритичны потери части пакетов, чего нельзя сказать о копировании программных файлов и документов. На этом уровне данные не интерпретируются.

      Прикладной уровень (Application Layer)

      Здесь объединены 3 уровня модели OSI – сеансовый, представления и прикладной. На него ложатся задачи по поддержанию сеанса связи, преобразованию данных, взаимодействию с пользователем и сетью. На этом уровне применяются стандарты интерфейса API, позволяющего передавать команды на выполнение определенных задач.

      Возможно и использование «производных» протоколов. Например, для открытия сайтов используется HTTPS, при отправке электронной почты – SMTP, для назначения IP-адресов – DHCP. Такой подход упрощает программирование, снижает нагрузку на сеть, увеличивает скорость обработки команд и передачи данных.

      Порты и сокеты – что это и зачем они нужны

      Процессы, работающие на прикладном уровне, «общаются» с транспортным, но они видны ему как «черные ящики» с зашифрованной информацией. Зато он понимает, на какой IP-адрес адресованы данные и через какой порт надо их принимать. Этого достаточно для точного распределения пакетов по сети независимо от месторасположения хостов. Порты с 0 до 1023 зарезервированы операционными системами, остальные, в диапазоне от 1024 до 49151, условно свободны и могут использоваться сторонними приложениями.

      Комбинация IP-адреса и порта называется сокетом и используется при идентификации компьютера. Если первый критерий уникален для каждого хоста, второй обычно фиксирован для определенного типа приложений. Так, получение электронной почты проходит через 110 порт, передача данных по протоколу FTP – по 21, открытие сайтов – по 80.

      Преобразование IP-адресов в символьные адреса

      Технология активно используется для назначения буквенно-цифровых названий веб-ресурсов. При вводе домена в адресной строке браузера сначала происходит обращение к специальному серверу DNS. Он всегда прослушивает порт 53 у всех компьютеров, которые подключены к интернету, и по запросу преобразует введенное название в стандартный IP-адрес.

      После определения точного местонахождения файлов сайта включается обычная схема работы – от прикладного уровня с кодированием данных до обращения к физическому оборудованию на уровне сетевых интерфейсов. Процесс называется инкапсуляцией информации. На принимающей стороне происходит обратная процедура – декапсуляция.

      Источник

      Читайте также:  Аппаратные компоненты компьютерных сетей восстановите ip адрес
Оцените статью
Adblock
detector