Схема импульсного блока питания роутера

Ремонт блоков питания сетевого оборудования D-Link

Наверное, многие знают, что блоки питания — это самое слабое место неуправляемых свитчей и роутеров D-Link (и ASUS кстати тоже), которые массово используются дома и в небольших офисах. Чаще всего они выходят из строя в результате больших скачков питания, но также и из-за старения в результате многолетней работы. Причин тому несколько: и схема, сделанная без запаса, впритык и не очень качественные элементы, в результате частичного или полного выхода из строя которых выявились типовые неисправности.

Речь пойдет о дешевых блоках питания, которые использовались с роутерами серии DI-6xx и DI-7xx, DI-8xx; точек доступа DWL-2xxx, а также свитчами DGS-1005D и т.п. Чаще всего в них использовались блоки питания JTA0302D-E, JTA0302E-E и JTA0302F-E, выдающие на выходе 5V и рассчитанные на максимальный выходной ток 2, 2,5 и 3 А соответственно.

Схема и конструкция всех этих блоков почти идентична. Это типичные импульсные однотактные блоки питания, в которых управлением служит ШИМ-контроллер, который управляет работой полевого транзистора, подключенного к его выходу. Пониженное и выпрямленное напряжение подает на выход.

На входе традиционно стоит предохранитель на 2А, терморезистор, катушка и диодный мост 1N4007, состоящий из 4 диодов. Все они могут выйти из строя только в случае большого скачка на входе, в типовой ситуации они из строя не выходят, хотя не лишне их проверить мультиметром, благо это дело 1 минуты. На выходе диодного моста, играющего роль выпрямителя включен конденсатор C1 большой емкости — 22 или 33 мкФ на 400 В, который выполняет роль фильтра. Я встречал только один раз выход его из строя, что было легко заметно по его вздутию.

Затем стоит цепочка элементов, которые обеспечивают подачу питания с (+) диодного моста на управляющую микросхему — ШИМ UC3843B. Именно он управляет открытием и закрытием полевика P4NK60Z. Вход — 7 нога микросхемы, выход — 6-я. На вход COMP (иногда FB) подается напряжение обратной связи с оптрона PC817 (L0403), обеспечивающего развязку с выходом схемы. При отсутствии напряжения обратной связи на выходе оптрона ИМС не заведется, так напряжение поступает на встроенный операционный усилитель, который отрабатывает ошибку ОС.

Читайте также:  Нет интернета от роутера мегафон

Еще одним обязательным условием работы микросхемы — напряжение питания. Порог напряжения зависит от модели примененной микросхемы семейства. Например, для UC3843B минимальное пороговое напряжение (off) — 10 В, а максимальное пороговое (on) — 16В. Для других модификаций оно может быть немного другим. По опытам, на вход 3843 должно подаваться не менее +9,17 В, В противном случае микросхема не заведется.

Так вот, именно в цепи питания ШИМ и кроется проблема. Там стоит электролитический конденсатор C6 47 мкФ х 25В и стабилитрон (также называемый заграницей диодом Зенера) ZD1 BZX55C20, рассчитанный на 20 В. Конденсатор в цепи питания микросхемы (С6) должен иметь ёмкость достаточную для того, чтобы напряжение питания микросхемы при запуске оставалось в рабочих пределах. Поскольку при запуске конденсаторы на выходе выпрямителя разряжены, то они представляют собой почти корокозамкнутую нагрузку. Поэтому конденсатор С6 при старте не заряжается от обмотки трансформатора через R9 и D2. Разработчики микросхемы 384х рекомендуют использовать конденсатор ёмкостью 100 мкФ.
При высыхании конденсатора С6 происходят многократные попытки запуска, напряжение питания микросхемы падает ниже уровня работы, потом зарядка через R4 и так по циклу. В результате конденсаторы С9 и С11 циклически заряжаются-разряжаются большим током, что приводит к их нагреву, кипению электролита и высыханию. С С6 происходит то же самое. Поскольку ёмкость С9 и С11 уменьшается, то схема обратной связи реагирует на пики несглаженного напряжения, в результате чего действующее напряжение на выходе блока УМЕНЬШАЕТСЯ. А вот несглаженные выбросы напряжения в цепи питания микросхемы как раз и гасятся на стабилитроне ZD1, что и приводит к его нагреву, а потом и к пробою.

Так вот, почти все случаи выхода из строя БП не в результате скачка или пробоя связаны именно с конденсатором. Т.к. он имеет небольшие размеры, разглядеть выпуклость на его крышке невозможно . Как показывают измерения, свою емкость он со временем сохраняет: мультиметр показывает заряд и разряд. а вот его ESR оставляет желать лучшего. А как известно, ESR без специальных измерителей не проверить, поэтому на него редко обращают внимание, а зря. В итоге, из-за этого электролита напряжение питания на входе не 9,5, а 6-8 В.

Читайте также:  Билайн роутеры которые подходят

d-Link_psu_5v

Также в случае скачков по питанию встречаются случаи пробоя стабилитрона ZD1. Обычно он виден как обуглившийся диод, хотя выход его из строя скорее исключение, чем правило.

Частота переключения и соответственно длина рабочего цикла зависят от соотношения Rt/Ct на соответствующем входе микросхемы. Но поскольку там нанофарадные конденсаторы, то они в данном случае не подлежат типичному выходу из строя.

Редко бывают случаи выхода из строя полевого транзистора. На него в выхода ШИМ подается 13-15 В. Он легко проверяется мультиметром в режиме диода. На его канале сток-исток должно падать 0,6-0,8 В.

Ну и последняя неисправность, которую можно встретить — нестабильное включение прибора или же присутствие 5 В на выходе при измерениях мультиметром, но просаживание до 2В, при подключении нагрузки. Такая проблема связана опять же с высыханием электролитических конденсаторов, но теперь уже на выходе БП, которые стоят в цепи выходного фильтра с выпрямителя. Обычно там стоят пара C9 и С11 1000×10 В, 220х16 В или же 680х10 (С9 и С10) и 220х10 В (С11). Заменив их на аналогичные электролиты вы решите проблемы. У этих конденсаторов «беременность» почти всегда видна.

Рецепты ремонта

  1. Нет напряжения на выходе вообще. Проверить на входе F1, TR, диодный мост на предмет пробоя. Заменить C6 47 мкФ х 25В на 10 мкФ х 50 В (для запаса запуска).
  2. Выходное напряжение меньше, проваливается, не стабильно; БП запускается не всегда. Поменять электролиты С1, С9, С10, С11.

Пару советов. В БП на 2А есть ряд оргехов проектирования. В частности, на выходе стоит R 220 Ом 0.125w, который работает на пределе, залит герметиком и греет C9, который почему-то на 10 В, а С11 — на 16. В итоге, ёмкость C9 высыхает . Замените R на 300 Ом 0,5 Вт и C9 на 16 В конденсатор. После этого он будет греться значительно меньше.

Обратите внимание, что в 0302D-E (2А) С10 отсутствует, а в 0302E-E (2.5 А) он уже есть и вместе с C9 они на 680 мкФ х 10В. Да, и впаивайте электролиты так, чтобы они были на высоте 3-5 мм от платы, чтобы был зазор, уменьшающий их нагрев.

[Посещений: 9 513, из них сегодня: 1]

Источник

Читайте также:  Два компа сеть роутер

Ремонт блоков питания от роутеров и другой техники Asus и D-Link за 10 минут

Написать этот пост я решил, после прочтения многочисленных комментариев о том, что многим пришлось поменять роутер, так как он стал мигать всеми лампочками подряд, перестал загружаться и прошиваться! Упорно используя «Поиск», описания этой проблемы, к моему великому удивлению, я не нашел на Хабре. Хотя проблема известна давно и описана в Рунете. Бывает такое, по закону подлости, на следующий день как закончится гарантия. А обычно через 1.5-2.5 года эксплуатации. Всему виной, в 90% случаев, лишь блок питания (далее по тексту — БП). В сервисных центрах в ремонте отказывают, т.к. гарантия закончилась или впаривают новый БП по цене от 700 до 1200 рублей. Данная проблема случается в 3 роутерах из 10, оборудованных этими источниками питания. Обычно БП производят сторонние фирмы, а все «восторженные» отзывы пользователей о надежности оборудования, достаются именно D-Link и Asus! Стоимость деталей для ремонта — 10 рублей!
Итак, начнем!

image

Слева БП Asus, справа БП D-Link. Схема у них одна, бывают незначительные изменения в номиналах компонентов. Самое подлое, что БП выдает, положенные ему 5V и пользователь снимает с него подозрения. Но под нагрузкой напряжение проседает до 2V, а это как раз никто не проверяет!

Для ремонта, нам потребуется: паяльник с припоем, канцелярский нож и изолента. Вместо канцелярского ножа я использую бор-машинку (в народе еще называют “дремель”, пошло от названия фирмы DREMEL). Вскрываем корпус, он склеен, у кого-то, получается разрезать клеевой слой по шву, мне ковыряться лень, я пилю «дремелем». Видим внутри плату с вздувшимся электролитическим конденсатором (картинка не моя, у меня уже кондер поменян):

image

Выпаиваем вздувшийся конденсатор 1200uF 10V, на его место ставим любой электролитический с параметрами 1000uF-1200uF 10-16V (1200 uF 10 V, 1200uF 10V, 1000uF 16V и т.д.). Также, лучше сразу заменить электролитический конденсатор (он «запускает» БП) 10uF 25V на 10uF 50V. Не забываем соблюдать полярность! Получаем:

image

Собираем корпус обратно. Склеивать я не рекомендую, т.к. через 1.5 года, возможно, Вам снова придется менять конденсаторы! 🙂 Я обычно собираю на изоленту.

image

Таким способом, мною были восстановлены 5 БП, которые до сих пор исправно работают. Считаю, данная процедура под силу любому Хабражителю!

Источник

Оцените статью
Adblock
detector