Схема сетевого фильтра 220в своими руками самая простая модель

Как сделать сетевой фильтр своими руками

Схемы для сборки сетевого фильтра в домашних условиях. Узнайте, как можно сделать сетевой фильтр из подручных средств.

Конструкция

Прибор напоминает по своему виду удлинитель с кнопкой выключения, отчасти это так, но кроме колодки с розетками и провода внутри расположены и фильтрующие элементы. Они как раз и нужны для защиты от скачков напряжения и фильтрации помех.

В самом простом сетевом фильтре внутри стоит варистор. Это полупроводниковый прибор, который при превышении определенного напряжения уходит в состояние пробоя. Его применяют в сетевых фильтрах и блоках питания для защиты от всплесков напряжения. В зависимости от типа варистора он может погасить импульсы разной величины.

Такой вариант исполнения на варисторе самый дешевый, поскольку кроме всплесков напряжения он ничего не фильтрует. Помехи продолжают сочиться в сеть и мешать окружающей и запитанной аппаратуре.

Для фильтрации высокочастотных помех широко применяются L, LC и RLC- фильтры, их устанавливают также в сетевых фильтрах и блоках питания.

Кроме таких вариантов встречаются еще и модели, где сетевой шнур проходит через ферритовое кольцо, или делает вокруг него пару витков. По сути это еще один L (индуктивный) элемент, который нужен для фильтрации высокочастотной составляющей спектра.

Сетевой фильтр своими руками

Схема простейшего фильтра состоит из выключателя и варистора, вот как она выглядит:

V1 – это и есть варистор, его маркировка «471», значит, что его напряжение срабатывания 470В, при этом чем больше его диаметр, тем большую энергию он сможет погасить не взорвавшись при этом. Это значит, что чем больший варистор вы поставите, тем лучше, лишь бы он влез по габаритам. Вот пример сетевого фильтра собранного по этой схеме, но в заводском исполнении. Из вышесказанного следует, что это дешевый прибор, который не фильтрует то, что должен, а лишь гасит импульсы.

Чтобы ваш сетевой фильтр еще и действительно был фильтром помех, необходимо добавить фильтрующий элемент – дроссель.

Схемы – это, конечно, хорошо, но как сделать сетевой фильтр из подручных средств? Достаточно просто! Почти всегда у любителя что-нибудь мастерить, можно найти старый ненужный или нерабочий блок питания, в нём есть такой фильтр на входе. Осталось только его выпаять. На фото он стоит в ближнем к нам углу платы.

Это дроссель с двумя обмотками, через одну из них проходит фаза, а через другую ноль, таким образом индуктивность входит в состав сетевого фильтра и снижает уровень помех.

Кстати блок питания может работать и без него, многие китайцы так и делают свои товары, часто это встречается в дешевых БП для компьютера и не только.

Читайте также:  Какая топология сети не относятся к классическим топологиям

Если вы не нашли такого элемента в своих запасах – можно поискать ферритовое колечко с магнитной проницаемостью 400-2000 НМ и обмотать проводом ПЭВ-2 (можно смотать с 50 Гц сетевого трансформатора). Намотать на колечко так, как показано на картинке.

Не допускайте межвиткового замыкания и оставляйте зазоры как здесь изображено, иначе получите фейерверк от перемыкании фазы на ноль. Петельку на конце разрезать, в идеальном случае – сразу мотать двумя проводами. На кольцо перед намоткой наложить изолирующий слой, например из лакоткани.

Хорошая схема, которую легко сделать своими руками выглядит следующим образом:

А вот вариант его реализации «в железе». За основы взята пара фильтров от БП.

Конденсаторы лучше применять керамические или пленочные. Их можно также достать из блока питания, часто там встречаются в прямоугольном корпусе с острыми углами (параллелепипед).

Как сделать сетевой фильтр своими руками

Если есть ненужный БП можно просто отрезать часть платы с фильтром и использовать её. Вот пример на фото с указанием, что нужно отпилить для получения сетевого фильтра за пару минут.

И вот еще один вариант схемы для повторения. Именно она и используется во множестве блоков питания стандарта ATX:

Сетевой фильтр – полезное и простое устройство, которое не сложно сделать самому в домашних условиях. А если учесть все изобилие техники, прошедшей через современных обывателей и то, что у многих есть несколько ненужных и не работоспособных устройств, то запчасти валяются буквально у нас под ногами. Напоследок рекомендуем просмотреть несколько интересных видео инструкций по сборке самодельного сетевого фильтра:


  • Как сделать удлинитель своими руками
  • Как выбрать стабилизатор напряжения
  • Что такое перенапряжение в сети


Источник

Схема сетевого фильтра для подавления электромагнитных помех

Сетевой фильтр – это устройство, предназначенное для защиты электроаппаратуры от импульсных и высокочастотных помех, норовящих проникнуть в цепь источника первичного электропитания, а также от кратковременных превышений (относительно нормы) напряжения сети.

Ошибочно думать, что классический сетевой трансформатор (ввиду своей низкочастотности) не будет пропускать на вторичную обмотку высокочастотные и импульсные помехи. Будет, причём довольно охотно, особенно когда дело касается синфазных помех. Поэтому, относится ли оборудование к высокочувствительной приёмной технике, или качественной звуковой аппаратуре, сетевой фильтр – это штука весьма полезная и зачастую позволяющая в значительной степени повысить характеристики электронных устройств.
К тому же не следует забывать, что пассивные сетевые фильтры обладают достаточной степенью симметрии, т. е. импульсные и ВЧ помехи, создаваемые радиоэлектронным устройством, обратно в сеть они также не пропускают.

На предыдущей странице мы рассмотрели описание узлов «правильного» подавителя синфазных и дифференциальных помех, осталось лишь скомпоновать всё это дело в конструкцию «правильного» сетевого фильтра.

Читайте также:  Темы для дипломной работы компьютерные сети

Рис.1 Схема сетевого фильтра для подавления электромагнитных помех

Предохранитель F1 и варистор U1 – это защита от высоковольтных перенапряжений в сети. Такие перенапряжения случайны и результат их воздействия непредсказуем. И если штатно варистор отлично рассеивает высоковольтные импульсные помехи, то в случае длительного аварийного превышения напряжения в розетке (например, появление 380В при обрыве нуля), он не выдерживает мощности и сгорает. Сгорает с переходом в проводящее состояние. По этой причине обязательна дополнительная защита плавким предохранителем, рассчитанным на работу с максимальным током нагрузки.

Цепочка R1, R2, C1, C2 представляет собой простейшую ёмкостную схему фильтрации противофазных (дифференциальных) ВЧ помех, наведённых в линии питания. Подавляемые частоты – от 100кГц и выше.

Синфазный дроссель L1, как следует из названия, осуществляет ослабление НЧ синфазных помех, находящихся в диапазоне частот: от десятка до сотен килогерц. Помогают ему в этом деле конденсаторы С3, С4, расширяя полосу шунтирования помех (в том числе и асимметричных) вплоть до десятков мегагерц.

Дроссели L3 L4 с конденсаторным обвесом уменьшают дифференциальные помехи с частотами – от десятков килогерц до десятков мегагерц.

Дроссель L2 – нечастый гость в сетевых фильтрах, однако его отсутствие в трёхпроводной сети открывает прямую дорогу для проникновения синфазных помех из сети на корпус устройства.

Несмотря на кажущуюся простоту, сетевой фильтр, приведённый на Рис.1, обладает высокой надёжностью и эффективностью подавления всех видов импульсных и высокочастотных помех. Однако для обеспечения этой надёжности и эффективности необходимо скрупулёзно позаботиться о выборе требуемых комплектующих.

1. Варистор. На практике для сетевого напряжения 220В лучше использовать варисторы на 390В или 430В постоянного (классификационного) напряжения срабатывания. Эти напряжения соответствуют 277 или 305 вольтам действующего значения переменного тока. Вполне оптимальным значением энергии варистора является значение от 80 Дж и выше.

2. Конденсаторы желательно выбрать из числа специализированных, то есть предназначенных для подавления ЭМП. С1, С2, С5, С6 должны быть класса Y2. С3, С4, С7 могут быть класса: как Y2, так и X2.
Если же использовать обычные высоковольтные конденсаторы, то они должны быть рассчитаны на рабочее напряжение – не менее 630 В.
3. Дроссели – это главные элементы, отвечающие за уровень подавления помех, поэтому их крайне важно выполнить «по уму»!
Значения индуктивностей дросселей приведены на схеме, а выбор размеров сердечников и диаметра провода следует производить исходя из максимального тока (мощности) нагрузки.
Необходимое число витков рассчитывается на любом калькуляторе, исходя из индуктивности, размеров магнитопровода и его магнитной проницаемости.

Синфазный дроссель

L1 – это синфазный дроссель, состоящий из двух катушек, намотанных на общий кольцевой ферритовый сердечник с высокой магнитной проницаемостью (2000. 10000). Его индуктивность может находиться в пределах 1,8. 5 мГн.
Направление намотки обмоток дросселя – противоположное.
У любого сердечника есть такой параметр, как габаритная мощность, и эта габаритная мощность не должна быть меньше максимальной мощности, потребляемой нагрузкой. Приблизительно (с 10. 15% запасом) оценить необходимые размеры сердечника, исходя из его габаритной мощности, можно из таблицы, приведённой на странице – ссылка на страницу. И хотя во многих случаях производители в целях экономии игнорируют этот параметр, необходимых характеристик подавления можно достичь только при использовании «правильных» габаритов моточного изделия, даже, несмотря на его зачастую внебюджетную стоимость. В этой же таблице можно оценить необходимый диаметр обмоточного провода, который при практическом отсутствии скин-эффекта на 50Гц можно выбрать ~2 раза ниже приведённого.

Читайте также:  Компьютерные сети в промышленности

Дроссель подавления помех

Дроссели L3, L4 (в отличие от синфазного дросселя) не содержат противофазных обмоток, компенсирующих разностный магнитный поток, поэтому для них необходимы сердечники с высокой индукцией насыщения! Это могут быть: либо танцы с бубнами в виде немагнитных воздушных зазоров в кольцах с высокой магнитной проницаемостью, либо дроссели, намотанные на обрезках от ферритовых магнитных антенн для радиоприёмников, либо (оптимальный вариант) – дроссели на тороидальных сердечниках из распыленного железа.

В качестве таких сердечников следует использовать смеси, предназначенные для эксплуатации при значительных постоянных токах подмагничивания, в первую очередь смеси: –8, –14, –18, –19, –30, –34,–35, –52, на худой конец, расхожую – 26.
Тут важно понимать, что токи насыщения у всех этих материалов отличаются, однако, в первом приближении – однослойная обмотка, выполненная проводом необходимого для конкретного тока сечения, скорее всего, не приведёт к насыщению магнитопровода.
Диаметр провода намотки аналогичен диаметру провода в синфазном дросселе, а габаритные размеры сердечника, хочешь не хочешь, но также приближаются к размерам магнитопровода в синфазном дросселе.
Рассчитать количество витков для катушек на кольцах Amidon и Micrometals из порошкового железа (в зависимости от номера смеси и необходимой индуктивности) можно странице – ссылка на страницу

Дроссель подавления помех

Индуктивность дросселя L2 некритична.
Поскольку постоянных токов через дроссель не течёт, то его вполне можно выполнить на низкочастотном ферритовом кольце с высокой магнитной проницаемостью, либо на ферритовой фильтрующей трубке (защёлке) для кабеля.

На кольце следует разместить 10. 15 витков провода с диаметром, как минимум вдвое превышающим диаметр фазовых обмоток. На защёлке вполне достаточной окажется обмотка из 3. 4 витков. Если необходимого по диаметру провода не находится, то не возбраняется выполнить обмотку двойным проводом.

Всю земляную разводку внутри устройства необходимо выполнить как можно более короткими и «толстыми» проводниками.

Источник

Оцените статью
Adblock
detector