Системы адресации в компьютерных сетях ip адрес

7.8. Адресация в ip-сетях

В семействе протоколов TCP/IP используются три типа адресов: локальные (физические, аппаратные), IP-адреса и символьные доменные имена (доменная адресация).

Локальные адреса уникальны для каждого сетевого соединения, они используются для доставки данных в пределах подсети, являющейся элементом составной интерсети. Вопросы физической адресации решаются на канальном уровне стека TCP/IP. Если подсетью является локальная сеть, то локальный адрес – это МАС-адрес, который назначается сетевым адаптерам и сетевым интерфейсам маршрутизаторов. МАС-адрес для всех технологий локальных сетей имеет формат 6 байт.

Локальные адреса присваиваются сетевой плате адаптера компьютера при ее изготовлении. Эти адреса выбираются производителем сетевого интерфейсного оборудования из выделенного для него по лицензии адресного пространства. При замене платы сетевого адаптера меняется и ее локальный адрес.

Поскольку локальные и IP-адреса независимы друг от друга (между ними нет никакой алгоритмической связи), для отображения IP-адресов в локальные адреса (при передаче данных) и локальных адресов в IP-адреса (при приеме данных) необходимы соответствующие средства.

Определение локального адреса по IP-адресу осуществляется по протоколу ARP (Address Resolution Protocol, протокол разрешения адресов), который работает различным образом в зависимости от того, какой протокол канального уровня работает в данной подсети. Если подсетью является Ethernet, то в ней предусматривается широковещательный режим работы, если же это протокол глобальной сети (Х.25, Frame Relay и др.), то он, как правило, не поддерживает такой режим. Основным инструментом работы протокола ARP является таблица разрешения адресов, или ARP-таблица. Эта таблица хранится в памяти компьютера и содержит строки соответствия между IP-адресами и локальными адресами для каждого узла сети. Если требуется по IP-адресу найти его локальный адрес, ищется в таблице строка с соответствующим IP-адресом и по нему в этой строке определяется локальный адрес. ARP-таблица заполняется автоматически модулями ARP по мере необходимости. Каждый компьютер сети имеет отдельную ARP-таблицу для каждого своего сетевого интерфейса. Отображение с помощью ARP-таблиц выполняется только для отправляемых IP-пакетов, так как только в момент отправки создаются заголовки пакетов.

Обратная задача по отображению адресов, т. е. определение IP-адреса по локальному адресу, решается с помощью протокола RARP (Reverse Address Resolution Protocol, протокол обратного разрешения адресов). Протоколы ARP и RARP абсолютно независимы.

I P-адресация в сети Internet базируется на концепции составной сети, состоящей из хостов и других сетей, причем под хостом понимается узел сети (компьютер рабочей станции, сервер, маршрутизатор), который может принимать и передавать IP-пакеты. Хосты соединяются через одну или несколько сетей (подсетей сети Internet), и адрес любого из них состоит из адреса сети и адреса хоста в этой сети. IP-адреса являются основным типом адресов, используемых сетевым уровнем для передачи пакетов между сетями.

Читайте также:  Решение задач по компьютерным сетям

IP-адрес представляется четырьмя десятичными числами, разделенными точками (например, 108.25.17.100). Каждое из этих чисел не может превышать 255 и представляет один байт 4-байтного адреса. 32-битный адрес состоит из двух частей: номера сети и номера узла. Длина каждой части является переменной величиной. Номер сети (он представляется старшими битами адреса) выбирается администратором произвольно, либо назначается по рекомендации специальной административной службы Internet. Номер узла назначается независимо от его локального адреса. Конечный узел (компьютер, маршрутизатор) может входить в несколько IP-сетей, поэтому каждый порт узла должен иметь собственный IP-адрес. Следовательно, IP-адрес узла идентифицирует не весь узел, а его сетевое соединение (порт), т. е. точку доступа модуля IP-протокола к сетевому интерфейсу.

IP-пакет содержит два адреса – отправителя и получателя. Оба адреса статические, т. е. не меняются на протяжении всего пути пакета. При доставке пакета адресату используются таблицы маршрутов, которые устанавливаются на каждом хосте сети. Различные протоколы маршрутизации, реализующие алгоритмы маршрутизации, обеспечивают построение и настройку этих таблиц.

IP-адресация обеспечивает пять различных классов сетей – классы А, В, C, D, E. Для кодирования каждого класса в IP-адресе выделяются несколько старших бит (рис. 38).

Сети класса А предназначены для использования крупными организациями. Это большие сети, для их адресации выделено всего 7 бит, зато для адресации хостов выделено 24 бита.

Сети класса В – это сети среднего размера (сети университетов, крупных компаний), для их адресации выделено 14 бит.

Сети класса С – это сети с небольшим количеством рабочих станций. Таких сетей много, поэтому для их адресации выделено 21 бит.

Адреса класса D используются при обращении к группам рабочих станций. Таких групп может быть очень много, поэтому их адресация осуществляется 28-битовыми двоичными числами. Групповая адресация используется для распространения информации от одного хоста сразу нескольким узлам, образующим группу. Номер группы указывается в поле адреса. Групповой адрес не делится на поля номера сети и номера узла, он обрабатывается маршрутизатором с помощью специального протокола IGMP (Internet Group Management Protocol).

Адреса класса Е зарезервированы для использования в будущем.

Рис. 38. Структура IP-адреса в сетях классов А-Е

Источник

2.3 Основы адресации в ip-сетях

Одной из главных проблем, которую нужно разрешить при объединении компьютеров в сеть, является проблема их адресации. К адресу узла сети и схеме его назначения можно предъявить несколько требований [19]:

1. Адрес должен уникально идентифицировать компьютер в сети любого масштаба.

Читайте также:  В сетевой модели понятие работа это

2. Адрес должен иметь иерархическую структуру, удобную для построения больших сетей. Эту проблему хорошо иллюстрируют международные почтовые адреса, которые позволяют почтовой службе, организующей доставку писем между странами, пользоваться только названием страны адресата и не учитывать название его города, а тем более улицы. В больших сетях, состоящих из многих тысяч узлов, отсутствие иерархии адреса может привести к крупным издержкам: конечным узлам и коммуникационному оборудованию придется оперировать с таблицами адресов, состоящими из тысяч записей.

3. Адрес должен быть удобен для пользователей сети, а это значит, что он должен иметь символьное представление и, по возможности, смысловую нагрузку.

4. Адрес должен иметь по возможности компактное представление, чтобы не перегружать память коммуникационной аппаратуры – сетевых адаптеров, коммутаторов, маршрутизаторов и т. п.

Нетрудно заметить, что эти требования противоречивы: например, адрес, имеющий иерархическую структуру, скорее всего, будет менее компактным, чем неиерархический (такой адрес часто называют «плоским», то есть не имеющим структуры). Символьный же адрес, вероятно, потребует больше памяти, чем адрес-число.

Так как все перечисленные требования трудно совместить в рамках какой-либо одной схемы адресации, то на практике обычно используется сразу несколько схем, так что компьютер одновременно имеет несколько адресов, каждый из которых работает в соответствующей ситуации, а чтобы не возникало путаницы и компьютер всегда однозначно определялся своим адресом, используются специальные вспомогательные протоколы, которые по адресу одного типа могут определить адреса других типов.

В настоящее время известны следующие системы адресации:

1) составные числовые адреса;

В данном параграфе мы подробно разберем достоинства первой системы адресации (остальные системы будут рассмотрены в следующем параграфе).

Составные числовые адреса предназначены для однозначной адресации компьютера в сети любого масштаба, состоящей из подсетей. В адресах такого типа поддерживается двухуровневая иерархия, адрес делится на старшую часть – номер сети – и младшую – номер узла. Такое деление позволяет передавать сообщения между сетями только на основании номера сети, а номер узла используется только после доставки сообщения в нужную сеть; точно так же, как название улицы рассматривается почтальоном только после того, как письмо доставлено в нужный город. Типичные представители адресов этого типа – IP-адреса. Аналогично протоколам существуют адреса IPv4 и IPv6.

2.3.1 Адресация iPv4

Адреса IPv4 при выражении в десятичной системе используют точечное десятичное представление и принимают форму n.n.n.n, в которой n для каждого значения неизменно находится в диапазоне от 0 до 255. Так, IP-адрес крупнейшего российского почтового сервера в сети Интернет www.mail.ru имеет вид 194.67.57.26. Существуют некоторые ограничения на использование чисел: первое число в IP-адресе должно находиться в диапазоне от 1 до 223, а последнее – от 1 до 254, два числа в середине IP-адреса могут находиться в диапазоне от 0 до 255. Каждое из четырех чисел состоит из 8 бит и в стандартной терминологии IP-адресов называется октетом (octet). Следовательно, каждый из октетов представляет собой восьмизначное двоичное число, а IP-адрес целиком – тридцатидвухбитовую комбинацию нулей и единиц. Например, IP-адрес 128.10.2.30 имеет представление в двоичном формате: 10000000.00001010.00000010.00011110.

Читайте также:  Топология сети star bus

Запись адреса не предусматривает специального разграничительного знака между номером сети и номером узла. Вместе с тем при передаче пакета по сети часто возникает необходимость разделить адрес на эти две части. Так, маршрутизация, как правило, осуществляется на основании номера сети, поэтому каждый маршрутизатор, получая пакет, должен прочитать в соответст­вующем поле заголовок адрес назначения и выделить из него номер сети. Существует несколько подходов для определения, какая часть из 32 бит, отведенных под IP-адрес, относится к номеру сети (сетевая часть адреса), а какая – к номеру узла (хостовая часть адреса). Мы рассмотрим два основных подхода для адресации с помощью IPv4 [31]:

Для того чтобы проанализировать названные выше подходы адресации, необходимо определить понятие Маска подсети, которое обозначает число, применяемое в паре с IP-адресом, причем двоичная за­пись маски содержит непрерывную последовательность единиц в тех разря­дах, которые должны в IP-адресе интерпретироваться как номер сети. Гра­ница между последовательностями единиц и нулей в маске соответствует границе между номером сети и номером узла в IP-адресе.

При упрощенном подходе используется двухуровневая адресация, так как выделяется фиксированная граница для разделения адреса на сетевую и хостовую часть, то есть адрес компьютера состоит только из двух частей: сетевой и хостовой. Все 32-х-битовое поле адреса заранее делится на две части не обязательно равной, но фиксированной длины, в одной из которых всегда будет разме­щаться номер сети, а в другой – номер узла. Маска подсети принимает только 2 значения: либо 0, либо 255, которые устанавливаются в следующем порядке: 255 устанавливается под октетами, описывающими адрес сети (постоянная часть), а 0 устанавливается под октетами, описывающими адрес узла (переменная часть). Приведем пример двухуровневой архитектуры. Например, IP-адреса 128.10.2.30 и 128.10.3.30 имеют следующее представление в двоичном формате:

Так как у указанных IP-адресов изменяются последние два октета, то маска подсети будет выглядеть так: 255.255.0.0, а в двоичном виде выглядит – 11111111.11111111.00000000.00000000. Сопоставление адресов и маски подсети представлено в табл. 2.4.

Таблица 2.4 – Деление IP-адреса в соответствии с двухуровневой архитектурой

Источник

Оцените статью
Adblock
detector