- Вычислительные сети. Основные способы передачи данных
- Архитектура вычислительных сетей, их классификация, топология и принципы построения. Передача данных в сети, коллизии и способы их разрешения. Протоколы TCP-IP. OSI, DNS, NetBios. Аппаратное обеспечение для передачи данных. Система доменных имён DNS.
- Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
- Принципы построения компьютерных сетей. Характеристика компьютерных сетей
- Абонентская система (АС) — совокупность ЭВМ, ПО, периферийного оборудования, средств связи, ВС, которые выполняют прикладные процессы, коммуникационная подсеть (телекоммуникационная система представляет собой совокупность физической среды передачи информации, аппаратных и программных средств, обеспечивающих взаимодействие АС).
- Прикладной процесс — различные процедуры обработки, хранения, вывода информации, которые выполняются в интересах пользователя. С появлением сетей удалось решить две проблемы:
- 1) обеспечение, в принципе, неограниченного доступа к ЭВМ
- пользователей, независимо от их территориального расположения;
- 2) возможность оперативного перемещения больших массивов информации на любые расстояния.
- Для сетей принципиальное значение имеют следующие обстоятельства:
- ЭВМ, находящиеся в разных АС одной сети связываются между собой автоматически;
- каждая ЭВМ сети должна быть приспособлена как для работы в автономном режиме под управлением своей ОС, так и для работы в качестве составного звена сети;
- компьютеры сети могут работать в различных режимах: обмена данными между АС, запроса и выдачи информации, сбора информации, пакетной обработки данных и т.д.
- Аппаратное обеспечение сети составляют: ЭВМ различных типов; средства связи; оборудование АС; оборудование узлов связи; аппаратура связи и согласование работы сетей одного и того же уровня или различных уровней. Основные требования к ЭВМ сетей — это универсальность и модульность. Информационное обеспечение сети представляет собой единый информационный ориентированный на решаемые в сети задачи и содержащий массивы данных доступных для всех пользователей сетей и массивы для индивидуальных пользователей.
- ПО ВС автоматизирует процессы программирования задач, обработки информации, осуществляет планирование и организацию коллективного доступа к коммуникационным, вычислительным ресурсам сети. Также ПО осуществляет динамическое распределение и перераспределение этих ресурсов.
- Виды ПО ВС:
- общесетевое ПО, которое образуется распределенной ОС сети и программными средствами входящих в состав комплекса программ технического обслуживания;
- специальное ПО представленные прикладными программными средствами: функциональными и интегрированными пакетами программ, библиотеками стандартных программ, а также программами, отражающими специфику предметной области;
- базовое ПО ЭВМ, включающее ОС, системы автоматизации программирования, контролирующие и диагностические тест программы.
- Классификация компьютерных сетей
- По степени территориального распределения элементов сети. Таким образом, сети бывают глобальные, региональные и локальные. Глобальная КС объединяет АС рассосредоточенные на большой территории, охватывающие различные страны и континенты. Взаимодействие АС осуществляется на базе различных территориальных сетей связи, в которых используются телефонные линии, радио, спутниковая связь. Региональные КС объединяют АС расположенные друг от друга на значительном расстоянии в пределах одной страны, региона, большого города. Локальная КС связывает АС расположенные в пределах небольшой территории. Её протяженность ограничивается несколькими километрами.
- Отдельный класс составляют корпоративные КС. Корпоративная сеть относится к технической базе корпорации. Ей принадлежит ведущая роль задач планирования, организации
- производства корпорации.
- По способу управления КС делят на сети с централизованным, децентрализованным и смешанным управлением. По топологии сети могут делиться на два класса: широковещательные и последовательные. К широковещательным конфигурациям в любой момент времени на передачу единицу единицы информации может работать только одна рабочая станция, а остальные могут принимать этот кадр. Основные типы широковещательной конфигурации:
- общая;
- дерево;
- звезда с пассивным центром;
- В последовательных конфигурациях характерных для сетей с маршрутизацией информации передача данных осуществляется от одной рабочей станции к соседней. Причем на различных участках сети могут использоваться различные виды передающей среды. Передатчикам и приемникам здесь предъявляются более низкие требования, чем в широковещательных конфигурациях.
- произвольная ячейка;
- иерархическая;
- кольцо;
- цепочка;
- звезда с интеллектуальным центром.
- Способы передачи данных
- Телефонная сеть PSTN
- Передача по оптоволоконному кабелю
- Беспроводная связь
- Ближнего радиуса действия
- Среднего радиуса действия
- IEEE 802.11
- IEEE 802.16e WiMAX
- Дальнего радиуса действия
- Передача данных при помощи мобильных телефонов
- IEE 802.16e WiMAX
- Paging networks
- Коллизии и способы их разрешения
- Все данные, передаваемые по сети, помещаются в кадры определенной структуры и снабжаются уникальным адресом станции назначения. Чтобы получить возможность передавать кадр, станция должна убедиться, что разделяемая среда свободна. Это достигается прослушиванием основной гармоники сигнала, которая также называется несущей частотой (carrier-sense). Признаком незанятости среды является отсутствие на ней несущей частоты, которая при манчестерском способе кодирования равна 5-10 МГц, в зависимости от последовательности единиц и нулей, передаваемых в данный момент.
- Если среда свободна, то узел имеет право начать передачу кадра. Все станции, подключенные к кабелю, могут распознать факт передачи кадра, и та станция, которая узнает собственный адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные, передает их вверх по своему стеку, а затем посылает по кабелю кадр-ответ. Адрес станции источника содержится в исходном кадре, поэтому станция-получатель знает, кому нужно послать ответ. После окончания передачи кадра все узлы сети обязаны выдержать технологическую паузу (Inter Packet Gap) в 9,6 мкс. Эта пауза, называемая также межкадровым интервалом, нужна для приведения сетевых адаптеров в исходное состояние, а также для предотвращения монопольного захвата среды одной станцией. После окончания технологической паузы узлы имеют право начать передачу своего кадра, так как среда свободна.
- При описанном подходе возможна ситуация, когда две станции одновременно пытаются передать кадр данных по общей среде. Механизм прослушивания среды и пауза между кадрами не гарантируют защиты от возникновения такой ситуации, когда две или более станции одновременно решают, что среда свободна, и начинают передавать свои кадры. Говорят, что при этом происходит коллизия (collision), так как содержимое обоих кадров сталкивается на общем кабеле и происходит искажение информации — методы кодирования, используемые в Ethernet, не позволяют выделять сигналы каждой станции из общего сигнала.
- Коллизия — это нормальная ситуация в работе сетей Ethernet. Для возникновения коллизии не обязательно, чтобы несколько станций начали передачу абсолютно одновременно, такая ситуация маловероятна. Гораздо вероятней, что коллизия возникает из-за того, что один узел начинает передачу раньше другого, но до второго узла сигналы первого просто не успевают дойти к тому времени, когда второй узел решает начать передачу своего кадра. То есть коллизии — это следствие распределенного характера сети.
- Для уменьшения количества коллизий необходимо уменьшить количество устройств на сетевом сегменте, чтобы повлиять на уровень коллизий. Это обычно достигается путем деления сегмента на два сегмента и помещении моста (bridge) или маршрутизатора (router) между ними.
- Сетевая модель OSI
- 1.2. Среда и методы передачи данных в вычислительных сетях
- 1.2.3. Средства и методы передачи данных на физическом и канальном уровнях
Вычислительные сети. Основные способы передачи данных
Архитектура вычислительных сетей, их классификация, топология и принципы построения. Передача данных в сети, коллизии и способы их разрешения. Протоколы TCP-IP. OSI, DNS, NetBios. Аппаратное обеспечение для передачи данных. Система доменных имён DNS.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
ФАКУЛЬТЕТ РАДИОТЕХНИКИ, ЭЛЕКТРОНИКИ И ФИЗИКИ
КАФЕДРА КОНСТРУИРОВАНИЯ И ТЕХНОЛОГИИ РАДИОЭЛЕКТРОННЫХ СРЕДСТВ
По дисциплине информатика
Тема: «Вычислительные сети. Основные способы передачи данных»
Проверил преподаватель: Бизяев А.А.
- Принципы построения компьютерных сетей. Характеристика компьютерных сетей
- Классификация компьютерных сетей
- Способы передачи данных
- Коллизии и способы их разрешения
- Сетевая модель OSI
- ПротоколTCP—IP
- Система доменных имёнDNS
- NetBIOS
- Аппаратура передачи данных
- Литература
- амплитудная модуляция;
- частотная модуляция;
- фазовая модуляция.
- потенциальное;
- импульсное.
- симплексная (однонаправленная) передача (телевидение, радио);
- полудуплексная (прием/передача информации осуществляется поочередно);
- дуплексная (двунаправленная), каждый узел одновременно передает и принимает данные (например, переговоры по телефону).
- данные или информация, предназначенная для передачи по сети;
- адрес, указывающий место назначения пакета. Каждый узел сети имеет адрес. Кроме того, адрес имеет и приложение. Адрес приложения необходим для того, чтобы идентифицировать, какому именно приложению принадлежит пакет;
- управляющие коды – это информация, которая описывает размер и тип пакета. Управляющие коды включают в себя также коды проверки ошибок и другую информацию.
- коммутация каналов;
- коммутация пакетов;
- коммутация сообщений.
Принципы построения компьютерных сетей. Характеристика компьютерных сетей
Компьютерная сеть — сеть обмена и распределенной обработки информации, которая образуется множеством взаимосвязанных абонентских систем и средствами связи. Средства передачи ориентированы на коллективное использование общесетевых ресурсов — аппаратных, информационных и программных.
Абонентская система (АС) — совокупность ЭВМ, ПО, периферийного оборудования, средств связи, ВС, которые выполняют прикладные процессы, коммуникационная подсеть (телекоммуникационная система представляет собой совокупность физической среды передачи информации, аппаратных и программных средств, обеспечивающих взаимодействие АС).
Прикладной процесс — различные процедуры обработки, хранения, вывода информации, которые выполняются в интересах пользователя. С появлением сетей удалось решить две проблемы:
1) обеспечение, в принципе, неограниченного доступа к ЭВМ
пользователей, независимо от их территориального расположения;
2) возможность оперативного перемещения больших массивов информации на любые расстояния.
Для сетей принципиальное значение имеют следующие обстоятельства:
ЭВМ, находящиеся в разных АС одной сети связываются между собой автоматически;
каждая ЭВМ сети должна быть приспособлена как для работы в автономном режиме под управлением своей ОС, так и для работы в качестве составного звена сети;
компьютеры сети могут работать в различных режимах: обмена данными между АС, запроса и выдачи информации, сбора информации, пакетной обработки данных и т.д.
Аппаратное обеспечение сети составляют: ЭВМ различных типов; средства связи; оборудование АС; оборудование узлов связи; аппаратура связи и согласование работы сетей одного и того же уровня или различных уровней. Основные требования к ЭВМ сетей — это универсальность и модульность. Информационное обеспечение сети представляет собой единый информационный ориентированный на решаемые в сети задачи и содержащий массивы данных доступных для всех пользователей сетей и массивы для индивидуальных пользователей.
ПО ВС автоматизирует процессы программирования задач, обработки информации, осуществляет планирование и организацию коллективного доступа к коммуникационным, вычислительным ресурсам сети. Также ПО осуществляет динамическое распределение и перераспределение этих ресурсов.
Виды ПО ВС:
общесетевое ПО, которое образуется распределенной ОС сети и программными средствами входящих в состав комплекса программ технического обслуживания;
специальное ПО представленные прикладными программными средствами: функциональными и интегрированными пакетами программ, библиотеками стандартных программ, а также программами, отражающими специфику предметной области;
базовое ПО ЭВМ, включающее ОС, системы автоматизации программирования, контролирующие и диагностические тест программы.
Классификация компьютерных сетей
По степени территориального распределения элементов сети. Таким образом, сети бывают глобальные, региональные и локальные. Глобальная КС объединяет АС рассосредоточенные на большой территории, охватывающие различные страны и континенты. Взаимодействие АС осуществляется на базе различных территориальных сетей связи, в которых используются телефонные линии, радио, спутниковая связь. Региональные КС объединяют АС расположенные друг от друга на значительном расстоянии в пределах одной страны, региона, большого города. Локальная КС связывает АС расположенные в пределах небольшой территории. Её протяженность ограничивается несколькими километрами.
Отдельный класс составляют корпоративные КС. Корпоративная сеть относится к технической базе корпорации. Ей принадлежит ведущая роль задач планирования, организации
производства корпорации.
По способу управления КС делят на сети с централизованным, децентрализованным и смешанным управлением. По топологии сети могут делиться на два класса: широковещательные и последовательные. К широковещательным конфигурациям в любой момент времени на передачу единицу единицы информации может работать только одна рабочая станция, а остальные могут принимать этот кадр. Основные типы широковещательной конфигурации:
общая;
дерево;
звезда с пассивным центром;
В последовательных конфигурациях характерных для сетей с маршрутизацией информации передача данных осуществляется от одной рабочей станции к соседней. Причем на различных участках сети могут использоваться различные виды передающей среды. Передатчикам и приемникам здесь предъявляются более низкие требования, чем в широковещательных конфигурациях.
произвольная ячейка;
иерархическая;
кольцо;
цепочка;
звезда с интеллектуальным центром.
Способы передачи данных
Телефонная сеть PSTN
Модем и коммутируемый доступ
Передача по оптоволоконному кабелю
Synchronous optical networking
Fiber distributed data interface
Беспроводная связь
Ближнего радиуса действия
Среднего радиуса действия
IEEE 802.11
IEEE 802.16e WiMAX
Дальнего радиуса действия
Передача данных при помощи мобильных телефонов
IEE 802.16e WiMAX
Paging networks
Коллизии и способы их разрешения
Коллизия (англ. collision — ошибка наложения, столкновения) — в терминологии компьютерных и сетевых технологий, наложение двух и более кадров от станций, пытающихся передать кадр в один и тот же момент времени.
Все данные, передаваемые по сети, помещаются в кадры определенной структуры и снабжаются уникальным адресом станции назначения. Чтобы получить возможность передавать кадр, станция должна убедиться, что разделяемая среда свободна. Это достигается прослушиванием основной гармоники сигнала, которая также называется несущей частотой (carrier-sense). Признаком незанятости среды является отсутствие на ней несущей частоты, которая при манчестерском способе кодирования равна 5-10 МГц, в зависимости от последовательности единиц и нулей, передаваемых в данный момент.
Если среда свободна, то узел имеет право начать передачу кадра. Все станции, подключенные к кабелю, могут распознать факт передачи кадра, и та станция, которая узнает собственный адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные, передает их вверх по своему стеку, а затем посылает по кабелю кадр-ответ. Адрес станции источника содержится в исходном кадре, поэтому станция-получатель знает, кому нужно послать ответ. После окончания передачи кадра все узлы сети обязаны выдержать технологическую паузу (Inter Packet Gap) в 9,6 мкс. Эта пауза, называемая также межкадровым интервалом, нужна для приведения сетевых адаптеров в исходное состояние, а также для предотвращения монопольного захвата среды одной станцией. После окончания технологической паузы узлы имеют право начать передачу своего кадра, так как среда свободна.
При описанном подходе возможна ситуация, когда две станции одновременно пытаются передать кадр данных по общей среде. Механизм прослушивания среды и пауза между кадрами не гарантируют защиты от возникновения такой ситуации, когда две или более станции одновременно решают, что среда свободна, и начинают передавать свои кадры. Говорят, что при этом происходит коллизия (collision), так как содержимое обоих кадров сталкивается на общем кабеле и происходит искажение информации — методы кодирования, используемые в Ethernet, не позволяют выделять сигналы каждой станции из общего сигнала.
Коллизия — это нормальная ситуация в работе сетей Ethernet. Для возникновения коллизии не обязательно, чтобы несколько станций начали передачу абсолютно одновременно, такая ситуация маловероятна. Гораздо вероятней, что коллизия возникает из-за того, что один узел начинает передачу раньше другого, но до второго узла сигналы первого просто не успевают дойти к тому времени, когда второй узел решает начать передачу своего кадра. То есть коллизии — это следствие распределенного характера сети.
Для уменьшения количества коллизий необходимо уменьшить количество устройств на сетевом сегменте, чтобы повлиять на уровень коллизий. Это обычно достигается путем деления сегмента на два сегмента и помещении моста (bridge) или маршрутизатора (router) между ними.
Сетевая модель OSI
Сетевая модель OSI (ЭМВОС) (базовая эталонная модель взаимодействия открытых систем, англ. Open Systems Interconnection Basic Reference Model, 1978 г) — абстрактная сетевая модель для коммуникаций и разработки сетевых протоколов. Предлагает взгляд на компьютерную сеть с точки зрения измерений. Каждое измерение обслуживает свою часть процесса взаимодействия. Благодаря такой структуре совместная работа сетевого оборудования и программного обеспечения становится гораздо проще и прозрачнее. В настоящее время основным используемым стеком протоколов является TCP/IP, разработка которого не была связана с моделью OSI и к тому же была совершена до её принятия. Модель состоит из семи уровней, расположенных друг над другом. Уровни взаимодействуют друг с другом (по «вертикали») посредством интерфейсов, и могут взаимодействовать с параллельным уровнем другой системы (по «горизонтали») с помощью протоколов. Каждый уровень может взаимодействовать только со своими соседями и выполнять отведённые только ему функции.
1.2. Среда и методы передачи данных в вычислительных сетях
1.2.3. Средства и методы передачи данных на физическом и канальном уровнях
Пересылка данных в вычислительных сетях от одного компьютера к другому осуществляется последовательно, бит за битом. Физически биты данных передаются по каналам передачи данных в виде аналоговых или цифровых сигналов.
Совокупность средств (линий связи, аппаратуры передачи и приема данных), служащая для передачи данных в вычислительных сетях, называется каналом передачи данных. В зависимости от формы передаваемой информации каналы передачи данных можно разделить на аналоговые (непрерывные) и цифровые (дискретные).
Так как аппаратура передачи и приема данных работает с данными в дискретном виде (т.е. единицам и нулям данных соответствуют дискретные электрические сигналы), то при их передаче через аналоговый канал требуется преобразование дискретных данных в аналоговые (модуляция).
При приеме таких аналоговых данных необходимо обратное преобразование – демодуляция. Модуляция/демодуляция – процессы преобразования цифровой информации в аналоговые сигналы и наоборот. При модуляции информация представляется синусоидальным сигналом той частоты, которую хорошо передает канал передачи данных.
К способам модуляции относятся: