Среда и методы передачи данных в вычислительных сетях

1.2. Среда и методы передачи данных в сетях эвм

Для построения компьютерных сетей применяются линии связи, использующие различную физическую среду. В качестве физической среды в коммуникациях используются: металлы (в основном медь), сверхпрозрачное стекло (кварц) или пластик и эфир. Физическая среда передачи данных может представлять собой кабель «витая пара», коаксиальные кабель, волоконно-оптический кабель и окружающее пространство. Линии связи или линии передачи данных — это промежуточная аппаратура и физическая среда, по которой передаются информационные сигналы (данные). В одной линии связи можно образовать несколько каналов связи (виртуальных или логических каналов), например путем частотного или временного разделения каналов. Канал связи — это средство односторонней передачи данных. Если линия связи монопольно используется каналом связи, то в этом случае линию связи называют каналом связи. Канал передачи данных — это средства двухстороннего обмена данными, которые включают в себя линии связи и аппаратуру передачи (приема) данных. Каналы передачи данных связывают между собой источники информации и приемники информации. В зависимости от физической среды передачи данных каналы связи можно разделить на:

 проводные линии связи без изолирующих и экранирующих оплеток;

 кабельные, где для передачи сигналов используются такие линии связи как кабели «витая пара», коаксиальные кабели или оптоволоконные кабели;

 беспроводные (радиоканалы наземной и спутниковой связи), использующие для передачи сигналов электромагнитные волны, которые распространяются по эфиру.

Проводные линии связи

Проводные (воздушные) линии связи используются для передачи телефонных и телеграфных сигналом, а также для передачи компьютерных данных. Эти линии связи применяются в качестве магистральных линий связи. По проводным линиям связи могут быть организованы аналоговые и цифровые каналы передачи данных. Скорость передачи по проводным линиям «простой старой телефонной линии» (POST — Primitive Old Telephone System) является очень низкой. Кроме того, к недостаткам этих линий относятся помехозащищенность и возможность простого несанкционированного подключения к сети.

Кабельные каналы связи

Кабельные линии связи имеют довольно сложную структуру. Кабель состоит из проводников, заключенных в несколько слоев изоляции. В компьютерных сетях используются три типа кабелей. Витая пара (twisted pair) — кабель связи, который представляет собой витую пару медных проводов (или несколько пар проводов), заключенных в экранированную оболочку. Пары проводов скручиваются между собой с целью уменьшения наводок. Витая пара является достаточно помехоустойчивой. Существует два типа этого кабеля: неэкранированная витая пара UTP и экранированная витая пара STP. Характерным для этого кабеля является простота монтажа. Данный кабель является самым дешевым и распространенным видом связи, который нашел широкое применение в самых распространенных локальных сетях с архитектурой Ethernet, построенных по топологии типа “звезда”. Кабель подключается к сетевым устройствам при помощи соединителя RJ45. Кабель используется для передачи данных на скорости 10 Мбит/с и 100 Мбит/с. Витая пара обычно используется для связи на расстояние не более нескольких сот метров. К недостаткам кабеля «витая пара» можно отнести возможность простого несанкционированного подключения к сети. Коаксиальный кабель (coaxial cable) — это кабель с центральным медным проводом, который окружен слоем изолирующего материала для того, чтобы отделить центральный проводник от внешнего проводящего экрана (медной оплетки или слой алюминиевой фольги). Внешний проводящий экран кабеля покрывается изоляцией. Существует два типа коаксиального кабеля: тонкий коаксиальный кабель диаметром 5 мм и толстый коаксиальный кабель диаметром 10 мм. У толстого коаксиального кабеля затухание меньше, чем у тонкого. Стоимость коаксиального кабеля выше стоимости витой пары и выполнение монтажа сети сложнее, чем витой парой. Коаксиальный кабель применяется, например, в локальных сетях с архитектурой Ethernet, построенных по топологии типа “общая шина”. Коаксиальный кабель более помехозащищенный, чем витая пара и снижает собственное излучение. Пропускная способность – 50-100 Мбит/с. Допустимая длина линии связи – несколько километров. Несанкционированное подключение к коаксиальному кабелю сложнее, чем к витой паре. Кабельные оптоволоконные каналы связи. Оптоволоконный кабель (fiber optic) – это оптическое волокно на кремниевой или пластмассовой основе, заключенное в материал с низким коэффициентом преломления света, который закрыт внешней оболочкой.

Читайте также:  Опишите сетевую модель osi

Оптическое волокно передает сигналы только в одном направлении, поэтому кабель состоит из двух волокон. На передающем конце оптоволоконного кабеля требуется преобразование электрического сигнала в световой, а на приемном конце обратное преобразование. Основное преимущество этого типа кабеля – чрезвычайно высокий уровень помехозащищенности и отсутствие излучения. Несанкционированное подключение очень сложно. Скорость передачи данных 3Гбит/c. Основные недостатки оптоволоконного кабеля – это сложность его монтажа, небольшая механическая прочность и чувствительность к ионизирующим излучениям.

Источник

1.2. Среда и методы передачи данных в вычислительных сетях

1.2.3. Средства и методы передачи данных на физическом и канальном уровнях

Пересылка данных в вычислительных сетях от одного компьютера к другому осуществляется последовательно, бит за битом. Физически биты данных передаются по каналам передачи данных в виде аналоговых или цифровых сигналов. Совокупность средств (линий связи, аппаратуры передачи и приема данных), служащая для передачи данных в вычислительных сетях, называется каналом передачи данных. В зависимости от формы передаваемой информации каналы передачи данных можно разделить на аналоговые (непрерывные) и цифровые (дискретные). Так как аппаратура передачи и приема данных работает с данными в дискретном виде (т.е. единицам и нулям данных соответствуют дискретные электрические сигналы), то при их передаче через аналоговый канал требуется преобразование дискретных данных в аналоговые (модуляция). При приеме таких аналоговых данных необходимо обратное преобразование – демодуляция. Модуляция/демодуляция – процессы преобразования цифровой информации в аналоговые сигналы и наоборот. При модуляции информация представляется синусоидальным сигналом той частоты, которую хорошо передает канал передачи данных. К способам модуляции относятся:

 фазовая модуляция. При передаче дискретных сигналов через цифровой канал передачи данных используется кодирование:

 импульсное. Таким образом, потенциальное или импульсное кодирование применяется на каналах высокого качества, а модуляция на основе синусоидальных сигналов предпочтительнее в тех случаях, когда канал вносит сильные искажения в передаваемые сигналы. Обычно модуляция используется в глобальных сетях при передаче данных через аналоговые телефонные каналы связи, которые были разработаны для передачи голоса в аналоговой форме и поэтому плохо подходят для непосредственной передачи импульсов. В зависимости от способов синхронизации каналы передачи данных вычислительных сетей можно разделить на синхронные и асинхронные. Синхронизация необходима для того, чтобы передающий узел данных мог передать какой-то сигнал принимающему узлу, чтобы принимающий узел знал, когда начать прием поступающих данных. Синхронная передача данных требует дополнительной линии связи для передачи синхронизирующих импульсов. Передача битов передающей станцией и их прием принимающей станцией осуществляется в моменты появления синхроимпульсов. При асинхронной передаче данных дополнительной линии связи не требуется. В этом случае передача данных осуществляется блоками фиксированной длины (байтами). Синхронизация осуществляется дополнительными битами (старт-битами и стоп-битами), которые передаются перед передаваемым байтом и после него. При обмене данными между узлами вычислительных сетей используются три метода передачи данных:

Читайте также:  Протоколы сетевого хранения данных

 симплексная (однонаправленная) передача (телевидение, радио);

 полудуплексная (прием/передача информации осуществляется поочередно);

 дуплексная (двунаправленная), каждый узел одновременно передает и принимает данные (например, переговоры по телефону).

Источник

1.2. Среда и методы передачи данных в вычислительных сетях

Необходимо отметить, что в настоящее время кроме компьютерных сетей применяются и терминальные сети. Следует различать компьютерные сети и терминальные сети. Терминальные сети строятся на других, чем компьютерные сети, принципах и на другой вычислительной технике. К терминальным сетям, например, относятся: сети банкоматов, кассы предварительной продажи билетов на различные виды транспорта и т.д. Первые мощные компьютеры 50-годов, так называемые мэйнфреймы, были очень дорогими и предназначались только для пакетной обработки данных. Пакетная обработка данных самый эффективный режим использования процессора дорогостоящей вычислительной машины. С появлением более дешевых процессоров начали развиваться интерактивные терминальные системы разделения времени на базе мэйнфреймов. Терминальные сети связывали мэйнфреймы с терминалами. Терминал — это устройство для взаимодействия с вычислительной машиной, которое состоит из средства ввода (например, клавиатуры) и средств вывода информации (например, дисплея). Сами терминалы практически никакой обработки данных не осуществляли, а использовали возможности мощной и дорогой центральной ЭВМ. Эта организация работы называлась “режимом разделения времени”, так как центральная ЭВМ последовательно во времени решала задачи множества пользователей. При этом совместно использовались дорогие вычислительные ресурсы. Удаленные терминалы соединялись с компьютерами через телефонные сети с помощью модемов. Такие сети позволяли многочисленным пользователям получать удаленный доступ к разделяемым ресурсам мощных ЭВМ. Затем мощные ЭВМ объединялись между собой, так появились глобальные вычислительные сети. Таким образом, сначала сети применялись для передачи цифровых данных между терминалом и большой вычислительной машиной. Первые ЛВС появились в начале 70-х годов, когда были выпущены мини-компьютеры. Мини-компьютеры были намного дешевле мэйнфреймов, что позволило использовать их в структурных подразделениях предприятий. Затем появилась необходимость обмена данными между машинами разных подразделений. Для этого многие предприятия стали соединять свои мини-компьютеры и разрабатывать программное обеспечение, необходимое для их взаимодействия. В результате появились первые ЛВС. Появление персональных компьютеров послужило стимулом для дальнейшего развития ЛВС. Они были достаточно дешевыми и являлись идеальными элементами для построения сетей. Развитию ЛВС способствовало появление стандартных технологий объединения компьютеров в сети: Ethernet, Arcnet, Token Ring. Появление качественных линии связи обеспечили достаточно высокую скорость передачи данных – 10 Мбит/с, тогда как глобальные сети, использовали только плохо приспособленные для передачи данных телефонные каналы связи, имели низкую скорость передачи – 1200 бит/c. Из-за такого различия в скоростях многие технологии, применяемые в ЛВС, были недоступны для использования в глобальных. В настоящее время сетевые технологии интенсивно развиваются, и разрыв между локальными и глобальными сетями сокращается во многом благодаря появлению высокоскоростных территориальных каналов связи, не уступающих по качеству кабельным системам ЛВС. Новые технологии сделали возможным передачу таких несвойственных ранее вычислительным сетям носителей информации, как голос, видеоизображения и рисунки. Сложность передачи мультимедийной информации по сети связана с ее чувствительностью к задержкам при передаче пакетов данных (задержки обычно приводят к искажению такой информации в конечных узлах связи). Но эта проблема решается и конвергенция телекоммуникационных сетей (радио, телефонных, телевизионных и вычислительных сетей) открывает новые возможности для передачи данных, голоса и изображения по глобальным сетям Интернет.

Читайте также:  Компьютерные журналы о локальных сетях

Источник

Оцените статью
Adblock
detector