Средства передачи данных в вычислительных сетях

1.2. Среда и методы передачи данных в вычислительных сетях

Необходимо отметить, что в настоящее время кроме компьютерных сетей применяются и терминальные сети. Следует различать компьютерные сети и терминальные сети. Терминальные сети строятся на других, чем компьютерные сети, принципах и на другой вычислительной технике. К терминальным сетям, например, относятся: сети банкоматов, кассы предварительной продажи билетов на различные виды транспорта и т.д. Первые мощные компьютеры 50-годов, так называемые мэйнфреймы, были очень дорогими и предназначались только для пакетной обработки данных. Пакетная обработка данных самый эффективный режим использования процессора дорогостоящей вычислительной машины. С появлением более дешевых процессоров начали развиваться интерактивные терминальные системы разделения времени на базе мэйнфреймов. Терминальные сети связывали мэйнфреймы с терминалами. Терминал — это устройство для взаимодействия с вычислительной машиной, которое состоит из средства ввода (например, клавиатуры) и средств вывода информации (например, дисплея). Сами терминалы практически никакой обработки данных не осуществляли, а использовали возможности мощной и дорогой центральной ЭВМ. Эта организация работы называлась “режимом разделения времени”, так как центральная ЭВМ последовательно во времени решала задачи множества пользователей. При этом совместно использовались дорогие вычислительные ресурсы. Удаленные терминалы соединялись с компьютерами через телефонные сети с помощью модемов. Такие сети позволяли многочисленным пользователям получать удаленный доступ к разделяемым ресурсам мощных ЭВМ. Затем мощные ЭВМ объединялись между собой, так появились глобальные вычислительные сети. Таким образом, сначала сети применялись для передачи цифровых данных между терминалом и большой вычислительной машиной. Первые ЛВС появились в начале 70-х годов, когда были выпущены мини-компьютеры. Мини-компьютеры были намного дешевле мэйнфреймов, что позволило использовать их в структурных подразделениях предприятий. Затем появилась необходимость обмена данными между машинами разных подразделений. Для этого многие предприятия стали соединять свои мини-компьютеры и разрабатывать программное обеспечение, необходимое для их взаимодействия. В результате появились первые ЛВС. Появление персональных компьютеров послужило стимулом для дальнейшего развития ЛВС. Они были достаточно дешевыми и являлись идеальными элементами для построения сетей. Развитию ЛВС способствовало появление стандартных технологий объединения компьютеров в сети: Ethernet, Arcnet, Token Ring. Появление качественных линии связи обеспечили достаточно высокую скорость передачи данных – 10 Мбит/с, тогда как глобальные сети, использовали только плохо приспособленные для передачи данных телефонные каналы связи, имели низкую скорость передачи – 1200 бит/c. Из-за такого различия в скоростях многие технологии, применяемые в ЛВС, были недоступны для использования в глобальных. В настоящее время сетевые технологии интенсивно развиваются, и разрыв между локальными и глобальными сетями сокращается во многом благодаря появлению высокоскоростных территориальных каналов связи, не уступающих по качеству кабельным системам ЛВС. Новые технологии сделали возможным передачу таких несвойственных ранее вычислительным сетям носителей информации, как голос, видеоизображения и рисунки. Сложность передачи мультимедийной информации по сети связана с ее чувствительностью к задержкам при передаче пакетов данных (задержки обычно приводят к искажению такой информации в конечных узлах связи). Но эта проблема решается и конвергенция телекоммуникационных сетей (радио, телефонных, телевизионных и вычислительных сетей) открывает новые возможности для передачи данных, голоса и изображения по глобальным сетям Интернет.

Читайте также:  Компьютерные ресурсы сети определение

Источник

4. Аппаратные средства передачи данных

Основным элементом сети является физическая передающая среда. Она представлена тремя типами кабелей: витая пара проводов (телефонный кабель), коаксиальный кабель (телеантенна), оптоволоконный кабель и радиоволны (тарелка спутниковой связи).

Физическая передающая среда, специальное вспомогательное оборудование и программные средства образуют коммуникационную среду.

Для того, чтобы обеспечить прием-передачу цифровых данных между компьютером и коммуникационной средой используется специальное устройство – сетевой адаптер.

Для некоторой физической среды необходимо выполнять модуляцию и демодуляцию сигнала при приеме-передаче радиосигнала. Эту функцию выполняет модем.

При построении ряда компьютерных сетей экономят на каналах связи, коммутируя несколько внутренних каналов связи на один внешний за счет концентраторов (HUB).

В локальных сетях, где физическая передающая среда представляет собой кабель ограниченной длины, для увеличения протяженности сети используются специальные устройства – повторители.

Характеристики коммуникационной сети:

— скорость передачи данных по каналу связи (бит в секунду);

— пропускная способность канала связи (знак в секунду);

— достоверность передачи данных (ошибок/знак);

— надежность канала связи (среде время безотказной работы – час).

5. Архитектура компьютерных сетей. Понятие «Открытая система»

Архитектура компьютерной сети – это описание ее общей модели.

Организация взаимодействия между устройствами в сети является сложной задачей. Для решения этой задачи используется метод декомпозиции – разбиение одной системной задачи на несколько простых задач – модулей. При декомпозиции используют многоуровневый подход, имеющий иерархическую структуру.

OSI (Open System Interconnection) – это модель взаимодействия открытых систем. Она определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какие функции должен выполнять каждый модуль.

В модели OSI средства взаимодействия разделены на 7 уровней:

Приложение обращается с запросом к файловой службе. На основании этого запроса, на прикладном уровне формируется сообщение стандартного формата.

Сообщение состоит из заголовка и поля данных.

Заголовок содержит служебную информацию для компьютера–адресата.

Сообщение передается вниз по стеку представительного уровня, после чего сообщение передается ниже. Достигнув самого низкого уровня – сообщение передается по линии связи машине–адресату. При этом к сообщению добавляются заголовки всех семи уровней.

Поступив на машину–адресат, сообщение проходит вверх.

Каждый уровень анализирует и обрабатывает свой заголовок, а затем удаляет его и передает сообщение вышележащему уровню.

Читайте также:  Классификация компьютерной сети по уровню административной поддержки

Процесс обмена данными между пользователями в модели OSI

7 – Прикладной уровень. С помощью специальных приложений пользователь создает документ (сообщение, рисунок и т.д.);

6 – Представительный уровень. Операционная система компьютера его фиксирует, где находятся созданные данные (в оперативной памяти, в файле на жестком диске и т.д.), и обеспечивает взаимодействие со следующим уровнем.

5 — Сеансовый уровень. Компьютер пользователя взаимодействует с локальной или глобальной сетью. Протоколы этого уровня проверяют права пользователя на «выход в эфир» и передают документ к следующему уровню.

4 – Транспортный уровень. Документ преобразуется в ту форму, в которой положено передавать данные. Например, он может нарезаться на небольшие пакеты стандартного размера.

3 – Сетевой уровень. Определяет маршрут движения данных в сети. Например, если на транспортном уровне данные были «нарезаны» на пакеты, то на сетевом уровне каждый пакет должен получить адрес, по которому он должен быть доставлен.

2 – Канальный уровень (соединения). Происходит модулирование сигналов, а также обнаружение ошибок при передаче данных и их исправление. В компьютере эти функции выполняет сетевая карта или модем.

1 – Физический уровень. Происходит реальная передача данных в виде битов.

Восстановление документа на компьютере адресата произойдет постепенно, при переходе с нижнего на верхний уровень.

Источник

Средства и методы передачи данных на физическом и канальном уровнях

Пересылка данных в вычислительных сетях от одного компьютера к другому осуществляется последовательно, бит за битом. Физически биты данных передаются по каналам передачи данных в виде аналоговых или цифровых сигналов. Совокупность средств (линий связи, аппаратуры передачи и приема данных), служащая для передачи данных в вычислительных сетях, называется каналом передачи данных. В зависимости от формы передаваемой информации каналы передачи данных можно разделить на аналоговые (непрерывные) и цифровые (дискретные). Так как аппаратура передачи и приема данных работает с данными в дискретном виде (т.е. единицам и нулям данных соответствуют дискретные электрические сигналы), то при их передаче через аналоговый канал требуется преобразование дискретных данных в аналоговые (модуляция). При приеме таких аналоговых данных необходимо обратное преобразование – демодуляция. Модуляция/демодуляция – процессы преобразования цифровой информации в аналоговые сигналы и наоборот. При модуляции информация представляется синусоидальным сигналом той частоты, которую хорошо передает канал передачи данных. К способам модуляции относятся:

 фазовая модуляция. При передаче дискретных сигналов через цифровой канал передачи данных используется кодирование:

 импульсное. Таким образом, потенциальное или импульсное кодирование применяется на каналах высокого качества, а модуляция на основе синусоидальных сигналов предпочтительнее в тех случаях, когда канал вносит сильные искажения в передаваемые сигналы. Обычно модуляция используется в глобальных сетях при передаче данных через аналоговые телефонные каналы связи, которые были разработаны для передачи голоса в аналоговой форме и поэтому плохо подходят для непосредственной передачи импульсов. В зависимости от синхронизации каналы передачи данных вычислительных сетей можно разделить на синхронные и асинхронные. Синхронизация необходима для того, чтобы передающий узел данных мог передать какой-то свой сигнал, с тем, чтобы принимающий узел знал, когда начать поиск и распознавание поступающих данных. При обмене данными между узлами вычислительных сетей используются три метода передачи данных:

Читайте также:  Компьютерные сети какая специальность

 симплексная (однонаправленная) передача (телевидение, радио);

 полудуплексная (прием/передача информации осуществляется поочередно);

 дуплексная (двунаправленная), каждый узел одновременно передает и принимает данные (например, переговоры по телефону).

Методы передачи на канальном уровне

Прежде чем послать данные в вычислительную сеть, посылающий узел данных разбивает их на небольшие блоки, называемые пакетами данных. На узле–получателе пакеты накапливаются и выстраиваются в должном порядке для восстановления исходного вида. В составе любого пакета должна присутствовать следующая информация:

 данные или информация, предназначенная для передачи по сети;

 адрес, указывающий место назначения пакета. Каждый узел сети имеет адрес. Кроме того, адрес имеет и приложение. Адрес приложения необходим для того, чтобы идентифицировать, какому именно приложению принадлежит пакет;

 управляющие коды – это информация, которая описывает размер и тип пакета. Управляющие коды включают в себя также коды проверки ошибок и другую информацию. Существует три принципиально различные схемы коммутации в вычислительных сетях:

 коммутация сообщений. При коммутации каналов устанавливается соединение между передающей и принимающей стороной в виде непрерывного составного физического канала из последовательно соединенных отдельных канальных участков для прямой передачи данных между узлами. Затем сообщение передается по образованному каналу.

Коммутация сообщений – процесс пересылки данных, включающий прием, хранение, выбор исходного направления и дальнейшую передачу блоков сообщений (без разбивки на пакеты). При коммутации сообщений блоки сообщений передаются последовательно от одного промежуточного узла к другому с временной буферизацией их на дисках каждого узла, пока не достигнут адресата. При этом новая передача может начаться только после того, как весь блок будет принят. Ошибка при передаче повлечет новую повторную передачу всего блока. Передача пакетов осуществляется аналогично передаче сообщений, но так как размер пакета значительно меньше блока сообщения, то достигается быстрая его обработка промежуточным коммуникационным оборудованием. Поэтому канал передачи данных занят только во время передачи пакета и по ее завершению освобождается для передачи других пакетов. Шлюзы и маршрутизаторы, принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге станции назначения. Данный вид передачи данных является стандартом для сети Интернет. В настоящее время телекоммуникационные сети строятся на цифровой основе, поэтому методы передачи данных, применяемые в вычислительных сетях, могут быть использованы для разработки стандартов передачи любой информации

Источник

Оцените статью
Adblock
detector