Типовая топология локальных вычислительных сетей

14.3.2. Типовые топологии и методы доступа лвс

Физическая передающая среда. Физическая среда обеспечивает перенос информации между абонентами вычислительной сети. Физическая передающая среда ЛВС представлена тремя типами кабелей: витая пара проводов, коаксиальный кабель, оптоволоконный кабель.

Витая пара состоит из двух изолированных проводов, свитых между собой. Скручивание проводов уменьшает влияние внешних электромагнитных полей на передаваемые сигналы. Самый простой вариант витой пары – телефонный кабель.

Коаксиальный кабельпо сравнению с витой парой обладает более высокой механической прочностью, помехозащищенностью и обеспечивает скорость передачи информации до 10 – 50 Мбит/с. для промышленного использования выпускаются два типа коаксиальных кабелей: толстый и тонкий.Толстый кабель более прочен и передает сигналы нужной амплитуды на большее расстояние, чемтонкий.

Оптоволоконный кабель – идеальная передающая среда. Он не подвержен действию электромагнитных полей и сам практически не имеет излучения. Последнее свойство позволяет использовать его в сетях, требующих повышенной секретности информации.

Скорость передачи информации по оптоволоконному кабелю более 50 Мбит/с. по сравнению с предыдущими типами передающей среды он более дорог, менее технологичен в эксплуатации.

Основные топологии ЛВС. Вычислительные машины, входящие в состав ЛВС, могут быть расположены самым случайным образом на территории, где создается вычислительная сеть.

Топологии вычислительных сетей могут быть самыми различными, но для локальных вычислительных сетей типичными являются всего три: кольцевая, шинная, звездообразная.

Любую компьютерную сеть можно рассматривать как совокупность узлов.

Узел – любое устройство, непосредственно подключенное к передающей среде сети.

Кольцевая топология предусматривает соединение узлов сети замкнутой кривой – кабелем передающей среды (рис. 7.6). Выход одного узла соединяется со входом другого. Информация по кольцу передается от узла к узлу. Каждый промежуточный узел между передатчиком и приемником ретранслирует посланное сообщение. Принимающий узел распознает и получает только адресованные ему сообщения.

Шиннаятопология – одна из наиболее простых (7.7). Она связана с использованием в качестве передающей среды коаксиального кабеля. Данные от передающего узла сети распространяются по шине в обе стороны. Промежуточные узлы не транслируют поступающих сообщений. Информация поступает на все узлы, но принимает сообщение только тот, которому оно адресовано. Дисциплина обслуживания параллельная.

Читайте также:  Охрана труда и техника безопасности компьютерные сети

Звездообразнаятопология (рис. 7.8) базируется на концепции центрального узла, к которому подключаются периферийные узлы. Каждый периферийный узел имеет свою отдельную линию связи с центральным узлом. Вся информация передается через центральный узел, который ретранслирует, переключает и маршрутизирует информационные потоки в сети.

Звездообразная топология значительно упрощает взаимодействие узлов ЛВС друг с другом, позволяет использовать более простые сетевые адаптеры. В то же время работоспособность ЛВС со звездообразной топологией целиком зависит от центрального узла.

В реальных вычислительных сетях могут использоваться более сложные топологии, представляющие в некоторых случаях сочетания рассмотренных.

Выбор той или иной топологии определяются областью применения ЛВС, географическим расположением ее узлов и размерностью сети в целом.

Методы доступа к передающей среде. Передающая среда является общим ресурсом для всех узлов сети. Чтобы получить возможность доступа к этому ресурсу из узла сети, необходимы специальные механизмы – методы доступа.

Метод доступа к передающей среде – метод, обеспечивающий выполнение совокупности правил, по которым узлы сети получают доступ к ресурсу.

Существуют два основных класса методов доступа: детерминированные, недетерминированные.

При детерминированных методах доступа передающая среда распределяется между узлами с помощью специального механизма управления, гарантирующего передачу данных узла в течение некоторого, достаточно малого интервала времени.

Наиболее распространенными детерминированными методами доступа являются метод опроса и метод передачи права. Метод опроса рассматривался ранее. Он используется преимущественно в сетях звездообразной топологии.

Метод передачи права применяется в сетях с кольцевой топологией. Он основан на передаче по сети специального сообщения – маркера.

Маркер – служебное сообщение определенного формата, в которое абоненты сети могут помещать свои информационные пакеты.

Маркер циркулирует по кольцу, и любой узел, имеющий данные для передачи, помещает их в свободный маркер, устанавливает признак занятости маркера и передает его по кольцу. Узел, которому было адресовано сообщение, принимает его, устанавливает признак подтверждения приема информации и отправляет маркер в кольцо.

Передающий узел, получив подтверждение, освобождает маркер и отправляет его в сеть. Существуют методы доступа, использующие несколько маркеров.

Недетерминированные – случайные методы доступа предусматривают конкуренцию всех узлов сети за право передачи. Возможны одновременные попытки передачи со стороны нескольких узлов, в результате чего возникают коллизии.

Читайте также:  Виды совместимости модулей вычислительных сетей

Наиболее распространенным недетерминированным методом доступа является множественный метод доступа с контролем несущей частоты и обнаружением коллизий. В сущности, это описанный ранее режим соперничества. Контроль несущей частоты заключается в том, что узел, желающий передать сообщение, «прослушивает» передающую среду, ожидая ее освобождения. Если среда свободна, узел начинает передачу.

Назначение ЛВС. Локальные вычислительные сети за последнее пятилетие получили широкое распространение в самых различных областях науки, техники и производства.

Особенно широко ЛВС применяются при разработке коллективных проектов, например сложных программных комплексов. На базе ЛВС можно создавать системы автоматизированного проектирования.

ЛВС позволяют реализовывать новые информационные технологии в системах организационно-экономического управления.

В учебных лабораториях университетов ЛВС позволяют повысить качество обучения и внедрять современные интеллектуальные технологии обучения.

Источник

Локально вычислительные сети и их типовые топологии

Локально вычислительные сети можно поделить на два типа:

В сетях первого типа имеется некоторый главный узел – центральная станция, который управляет процессом передачи и обмена данными между всеми узлами сети и клиентами.

В сетях второго типа все узлы имеют равное право на использование канала связи и управляются по одним и тем же правилам. Такая сеть называется одноранговой. В этом случае нет иерархии между компьютерами, то есть каждый из них функционирует и как клиент, и как сервер.

Под топологией сети понимается физическое расположение компонентов сети.

Топологии сети можно представить в виде графа, вершинами которого являются узлы сети, а ребрами – физические связи между ними. При этом конфигурация физических связей между компьютерами может отличаться от конфигурации логических связей между узлами сети. При выборе топологии принято руководствоваться следующими моментами:

1 – состав необходимого сетевого оборудования;

2 – характеристик сетевого оборудования;

3 – возможность расширения сети (масштабирования);

4 – способ управления сетью (способов взаимодействия компьютеров данной сети).

  1. Шина (BAS)

…..

  1. Звезда (star)

  1. Кольцо (ring)

  1. Комбинирование топологий

Для топологии типа шина характерно линейное расположение связей между узлами. В такой сети имеется один общий кабель, называется магистральным, вдоль которого подключаются все компьютерные сети, при этом передача сигналов может осуществляться в обе стороны. Топология шина является пассивной, то есть когда происходит передача данных по сети от одного из компьютеров остальные находятся в режиме приема, но сами в этот момент в передаче не участвуют. Но при этом информацию, передаваемую по сети воспринимает только тот компьютер чей адрес присутствует в передаваемых сообщениях. Поскольку в этой сети передачу в каждый момент времени может вести один из компьютеров, то чем больше их будет в рамках данной сети, тем медленнее будет связь. Достоинства: — сравнительная дешевизна и простота монтажа сети. Недостаток: — низкая надежность (любой дефект кабеля парализует всю сеть). Топология звезда– при данной топологии все компьютеры подключаются с помощью сегментов кабеля с ключом. Данная топология является примером централизованной сети. Функции центрального устройства – сервера предполагают управление передаваемой информации от отдельных компьютеров данной сети. Кроме того центральный узел может играть роль своеобразного фильтра, блокируя при необходимости запрещенные администратором передачи. Достоинства: — высокая надежность, так как если выйдет из строя один компьютер или сегмент кабеля, то только он не сможет участвовать в дальнейшем обмене информацией. Недостатки: — более высокая стоимость по сравнению с шиной, в первую очередь это обусловлено тем, что центральный узел должен быть максимально надежным, следовательно, дорогим; — при значительном наращивании сети существенно увеличивается расход кабеля; — ограничивается числом абонентов (не более 16). Топология кольцо – компьютеры подключаются к кабелю по замкнутому кольцу. Сеть с такой топологией может работать как в качестве централизованной сети, так и по схеме децентрализованной сети. При работе сети сигналы передаются в одном направлении и проходят через каждый компьютер. «Кольцо» является активной сетевой топологией. В активных топологиях компьютеры реагируют на поступающий сигналы и передают по сети, поэтому данные, сделав полный оборот возвращаются к источнику, который может контролировать процесс доставки данных к адресату. Достоинства: — возможность подключения достаточно большого числа абонентов (100 и более). Недостатки: — при выходе из строя одного из узлов вся сеть падает (распадается).

Читайте также:  Общая структура компьютерной сети компоненты компьютерных сетей

Источник

Оцените статью
Adblock
detector