Компьютерные сети и их классификация
Компьютерная сеть (Computer NetWork) – это совокупность компьютеров и других устройств, соединенных линиями связи и обменивающихся информацией между собой в соответствии с определенными правилами – протоколом.
Протокол играет очень важную роль, поскольку недостаточно только соединить компьютеры линиями связи. Нужно еще добиться того, чтобы они «понимали» друг друга.
Основная цель сети – обеспечить пользователей потенциальную возможность совместного использования ресурсов сети. Ресурсами сети называют информацию, программы и аппаратные средства.
Преимущества работы в сети:
- Разделение дорогостоящих ресурсов – совместное использование периферийных устройств (лучше и дешевле купить один дорогой, но хороший и быстродействующий принтер и использовать его как сетевой чем к каждому компьютеру покупать дешевые, но плохие принтеры), разделение вычислительных ресурсов (возможность использования удаленного запуска программ).
- Совершенствование коммуникаций (доступ к удаленным БД, обмен информации)
- улучшение доступа к информации
- свобода в территориальном размещении компьютеров
В зависимости от среды передачи данных линии связи разделяются на:
- Витая пара (экранированная и неэкранированная)
- Коаксиальный кабель
- Оптоволоконный
- Wi-Fi
- IrDa
Классификации сетей:
- глобальные — вычислительная сеть объединяет абонентов, расположенных в различных странах, на различных континентах. Глобальные вычислительные сети позволяют решить проблему объединения информационных ресурсов человечества и организации доступа к этим ресурсам;
- региональные — вычислительная сеть связывает абонентов, расположенных на значительном расстоянии друг от друга. Она может включать абонентов большого города, экономического региона, отдельной страны;
- локальные — вычислительная сеть объединяет абонентов, расположенных в пределах небольшой территории. К классу локальных сетей относятся сети отдельных предприятий, фирм, офисов и т. д.
По топологии физических связей – по способу соединения компьютеров между собой
Под топологией вычислительной сети понимается конфигурация графа, вершинам которого соответствуют компьютеры сети (а иногда и другое оборудование), а ребрами — физические связи между ними.
Полносвязная топология – каждый компьютер связан со всеми остальными. Громоздкий и неэффективный вариант, т.к. каждый компьютер должен иметь большое кол-во коммуникационных портов. | |
Ячеистая топология – получается из полносвязной путем удаления некоторых связей. Непосредственно связываются только те компьютеры, между которыми происходит интенсивный обмен данными. Даная топология характерна для глобальных сетей | |
Общая шина – до недавнего времени самая распространенная топология для локальных сетей. Компьютеры подключаются к одному коаксиальному кабелю. Дешевый и простой способ, недостатки – низкая надежность. Дефект кабеля парализует всю сеть. Дефект коаксиального разъема редкостью не является | |
Кольцевая топология – данные передаются по кольцу от одного компьютера к другому, если компьютер распознает данные как свои, он копирует их себе во внутренний буфер. | |
Топология Звезда – каждый компьютер отдельным кабелем подключается к общему устройству – концентрат (хаб). Главное преимущество перед общей шиной – большая надежность. Недостаток – высокая стоимость оборудования и ограниченное кол-во узлов в сети (т.к. концентрат имеет ограниченное число портов) | |
Иерархическая Звезда (древовидная топология, снежинка) – топология типа звезды, но используется несколько концентратов, иерархически соединенных между собой связями типа звезда. Самый распространенный способ связей как в локальных сетях, так и в глобальных. |
Выбор топологии электрических связей существенно влияет на многие характеристики сети. Например, Наличие резервных связей повышает надежность сети. Базовые требования компьютерных сетей:
- открытость — возможность включения дополнительных компьютеров, терминалов, узлов и линий связи без изменения технических и программных средств существующих компонентов;
- живучесть — сохранение работоспособности при изменении структуры;
- адаптивность — допустимость изменения типов компьютеров, терминалов, линий связи, операционных систем;
- эффективность — обеспечение требуемого качества обслуживания пользователей при минимальных затратах;
- безопасность информации. Безопасность — это способность сети обеспечить защиту информации от несанкционированного доступа.
Базовые принципы организации компьютерной сети:
- операционные возможности — перечень основных действий по обработке данных. Абоненты сети имеют возможность использовать память и процессоры многих компьютеров для хранения и обработки данных;
- производительность — представляет собой суммарную производительность компьютеров, участвующих в решении задачи пользователя;
- время доставки сообщений — определяется как статистическое среднее время от момента передачи сообщения в сеть до момента получения сообщения адресатом;
- стоимость предоставляемых услуг.
Виды компьютерных сетей
Компьютерные сети в зависимости от территории, ими охватываемой, подразделяются на:
- локальные (ЛВС или LAN — Local Area Network);
- региональные (РВС или MAN — Metropolitan Area Network);
- глобальные (ГВС или WAN — Wide Area Network).
Локальной называется сеть, абоненты которой находятся на небольшом расстоянии друг от друга. Обычно ЛВС «привязана» к конкретному объекту, различают локальные сети предприятий, фирм, банков, офисов и т. д. ЛВС могут использовать и технологии глобальной сети Интернет, входить в состав корпоративной сети. Региональные сети связывают абонентов города, района, области или даже небольшой страны. Обычно расстояния между абонентами региональной КС составляют десятки — сотни километров. Глобальные сети объединяют абонентов, удаленных друг от друга на значительное расстояние, часто находящихся в различных странах или на разных континентах. Взаимодействие между абонентами такой сети может осуществляться на базе телефонных линий связи, систем радиосвязи и даже спутниковой связи. Объединение глобальных, региональных и локальных вычислительных сетей позволяет создавать многосетевые иерархии. Они обеспечивают мощные, эффективные системы обработки огромных информационных массивов и доступ к неограниченным информационным ресурсам. Локальные вычислительные сети могут входить как компоненты в состав региональной сети, региональные сети — объединяться в составе глобальной сети и, наконец, глобальные сети могут также образовывать сложные структуры. Именно такая структура принята в наиболее известной и популярной сейчас всемирной суперглобальной информационной сети Интернет. По принципу организации передачи данных сети можно разделить на две группы:
- последовательные;
- широковещательные.
В последовательных сетях передача данных выполняется последовательно от одного узла к другому и каждый узел ретранслирует принятые данные дальше. Практически все глобальные, региональные и многие локальные сети относятся к этому типу. В широковещательных сетях в каждый момент времени передачу может вести только один узел, остальные узлы могут только принимать информацию. К такому типу сетей относится значительная часть ЛВС, использующая один общий канал связи (моноканал) или одно общее пассивное коммутирующее устройство. По геометрии построения (топологии) КС могут быть:
- шинные (линейные, bus);
- кольцевые (петлевые, ring);
- радиальные (звездообразные, star);
- распределенные радиальные (сотовые, cellular);
- иерархические (древовидные, hierarchy);
- полносвязные (сетка, mesh);
- смешанные (гибридные).
Сети с шинной топологией используют линейный моноканал передачи данных, к которому все узлы подсоединены через интерфейсные платы посредством относительно коротких соединительных линий. Данные от передающего узла сети распространяются по шине в обе стороны. Промежуточные узлы не ретранслируют поступающих сообщений. Информация поступает на все узлы, но принимает сообщение только тот, которому оно адресовано. Шинная топология — одна из наиболее простых топологий. Такую сеть легко наращивать и конфигурировать, а также адаптировать к различным системам; она устойчива к возможным неисправностям отдельных узлов. Сеть шинной топологии применяют широко известная сеть Ethernet, и организованная на ее адаптерах сеть Novell NetWare, очень часто используемая в офисах, например. Условно такую сеть можно изобразить, как показано на рис. 16.2. В сети с кольцевой топологией все узлы соединены в единую замкнутую петлю (кольцо) каналами связи. Выход одного узла сети соединяется со входом другого. Информация по кольцу передается от узла к узлу и каждый узел ретранслирует посланное сообщение. В каждом узле для этого имеются свои интерфейсная и приемо-передающая аппаратура, позволяющая управлять прохождением данных в сети. Передача данных по кольцу с целью упрощения приемо-передающей аппаратуры выполняется только в одном направлении. Принимающий узел распознает и получает только адресованные ему сообщения. Рис. 16.2. Сеть с шинной топологиейВвиду своей гибкости и надежности работы, сети с кольцевой топологией получили также широкое распространение на практике (например, сеть Token Ring). Условная структура такой сети показана на рис. 16.3. Основу последовательной сети с радиальной топологией составляет специальный компьютер — сервер, к которому подсоединяются рабочие станции, каждая по своей линии связи. Вся информация передается через центральный узел, который ретранслирует, переключает и маршрутизирует информационные потоки в сети. По своей структуре такая сеть, по существу, является аналогом системы телеобработки, у которой все абонентские пункты являются интеллектуальными (содержат в своем составе компьютер). Рис. 16.3. Сеть с кольцевой топологиейВ качестве недостатков такой сети можно отметить:
- большую загруженность центральной аппаратуры;
- полную потерю работоспособности сети при отказе центральной аппаратуры;
- большую протяженность линий связи;
- отсутствие гибкости в выборе пути передачи информации.
Последовательные радиальные сети используются в офисах с явно выраженным централизованным управлением. Но используются и широковещательные радиальные сети с пассивным центром — вместо центрального сервера в таких сетях устанавливается коммутирующее устройство, обычно концентратор, обеспечивающий подключение одного передающего канала сразу ко всем остальным. Рис.16.4. Сеть с радиальной топологиейВ общем случае топологию многосвязной компьютерной сети можно представить на примере топологии «сетка» в следующем виде — рис. 16.5: Рис. 16.5. Обобщенная структура компьютерной сети В структуре сети можно выделить коммуникационную и абонентскую подсети. Коммуникационная подсеть является ядром вычислительной сети, связывающим рабочие станции и серверы сети друг с другом. Звенья коммуникационной подсети (в данном случае — узлы коммутации) связаны между собой магистральными каналами связи, обладающими высокой пропускной способностью. В больших сетях коммуникационную подсеть часто называют сетью передачи данных. Звенья абонентской подсети (хост-компьютеры, серверы, рабочие станции) подключаются к узлам коммутации абонентскими каналами связи — обычно это среднескоростные телефонные каналы связи. В зависимости от используемой коммуникационной среды сети делятся на сети с моноканалом, иерархические, полносвязные сети и сети со смешанной топологией.
- В сетях с моноканалом данные могут следовать только по одному и тому же пути; в них доступ абонентов к информации осуществляется на основе селекции (выбора) передаваемых кадров или пакетов данных по адресной части последних. Все пакеты доступны всем пользователям сети, но «вскрыть» пакет может только тот абонент, чей адрес в пакете указан.
- Иерархические, полносвязные и сети со смешанной топологией в процессе передачи данных требуют маршрутизации последней, то есть выбора в каждом узле пути дальнейшего движения информации. Правда, альтернативная неоднозначная маршрутизация выполняется только в сетях, имеющих замкнутые контуры каналов связи (ячеистую структуру). Такие сети называются сетями с маршрутизацией информации.