1.4 Сетевые топологии и методы доступа к среде передачи данных
Топология сети характеризует взаимосвязи и пространственное расположение друг относительно друга компонентов сети — сетевых компьютеров (хостов), рабочих станций, кабелей и других активных и пассивных устройств. Топология влияет на:
- состав и характеристики оборудования сети;
- возможности расширения сети;
- способ управления сетью.
Все сети строятся на основе трех базовых топологий:
Метод доступа к среде передачи данных определяет, каким образом разделяемый ресурс — сетевой кабель — предоставляется узлам сети для осуществления актов передачи данных. Основные методы доступа к среде передачи данных:
- состязательный метод (множественный доступ с контролем несущей и обнаружением коллизий — CSMA/CD);
- с передачей маркера;
- по приоритету запроса.
1.4.1 Шинная топология
При помощи кабеля каждая рабочая станция соединяется с другими рабочими станциями и с файловым сервером. Кабель проходит от узла к узлу, последовательно соединяя все рабочие станции и все файловые серверы. На каждом конце кабеля подключается согласующая нагрузка (терминатор) для исключения эхоотражений (рисунок 12).
Рисунок 12 – Шинная топология
Шинная топология использует состязательный метод доступа. Это означает, что информацию принимает только тот компьютер, адрес которого соответствует адресу получателя, зашифрованному в передаваемых сигналах. Остальные компьютеры отбрасывают сообщение. Перед передачей данных компьютер должен ожидать освобождения шины. В каждый момент времени отправлять сообщение может только один компьютер, поэтому число подключенных к сети машин значительно влияет на ее быстродействие.
Преимущества шинной топологии:
- надежно работает в небольших сетях, проста в использовании;
- требует меньше кабеля для соединения компьютеров и потому дешевле, чем другие схемы соединении;
- легко расширяется за счет состыковки кабельных сегментов и использования повторителей.
Недостатки шинной топологии:
- интенсивный сетевой трафик снижает производительность сети. При большом числе компьютеров в сети станции часто прерывают друг друга, и немалая часть полосы пропускания теряется понапрасну. При добавлении компьютеров к сети резко падает производительность;
- цилиндрические соединители ослабляют электрический сигнал, и большое их число вызывает нарушения в передаче информации по шине;
- разрыв кабеля или неправильное функционирование одной из станций может привести к нарушению работоспособности всей сети. Сеть трудно диагностировать.
1.4.2 Звездообразная топология
Каждый компьютер в сети с топологией типа “звезда” (“star”) взаимодействует с центральным концентратором (hub – устройство для повторения сетевых сигналов) (рисунок 13).
Рисунок 13 – Топология “звезда”
Hub — устройство множественного доступа, выполняющее роль центральной точки.
В звездообразной сети используется состязательный метод доступа к среде — концентратор (хаб) передает сообщение всем компьютерам. В звездообразной сети с коммутацией коммутатор передает сообщение только компьютеру-адресату.
Активный концентратор регенерирует электрический сигнал и посылает его всем подключенным компьютерам. Такой тип концентратора часто называют многопортовым повторителем (multiport repeater). Для работы активных концентраторов и коммутаторов требуется питание от сети. Пассивные концентраторы, например, коммутационная кабельная панель или коммутационный блок, действуют как точка соединения, не усиливая и не регенерируя сигнал. Электропитания пассивные концентраторы не требуют.
Гибридный концентратор позволяет использовать в одной звездообразной сети разные типы кабелей. Расширить звездообразную сеть можно путем подключения вместо одного из компьютеров еще одного концентратора и подсоединения к нему дополнительных станций, в результате чего получается гибридно-звездообразная сеть (рисунок 14).
Рисунок 14 – Гибридно-звездообразная топология
Преимущества топологии «звезда «(Ethernet 10BaseT, 100BaseT):
Центральный концентратор звездообразной сети удобно использовать для диагностики. Интеллектуальные концентраторы (устройства с микропроцессорами, добавленными для повторения сетевых сигналов) обеспечивают также измерение параметров (мониторинг) и управление сетью. Отказ одного компьютера не обязательно приводит к остановке всей сети. Концентратор способен выявлять отказы и изолировать такую машину или сетевой кабель, что позволяет остальной сети продолжать работу. В одной сети допускается применение нескольких типов кабелей (если их позволяет использовать концентратор).
Недостатки сети со звездообразной топологией:
- при отказе центрального концентратора вся сеть становится неработоспособной;
- все компьютеры должны соединяться с центральной точкой, это увеличивает расход кабеля, следовательно, такие сети обходятся дороже, чем сети с иной топологией.
Глава 3. Топология, методы доступа к среде.
Каждая сетевая технология имеет характерную для нее топологию соединения узлов сети и метод доступа к среде передачи.
Различают физическую топологию, определяющую правила физических соединений узлов и логическую топологию, определяющую направление потоков данных между узлами сети. Логическая и физическая топологии относительно независимы друг от друга.
Физические топологии – шина, звезда, кольцо, дерево, сетка.
В логической шине информация, передаваемая одним узлом, одновременно доступна для всех узлов, подключенных к одному сегменту. Логическая шина реализуется на физической топологии шины, звезды, дерева, сетки. В логическом кольце информация передается последовательно от узла к узлу. Каждый узел принимает кадры только от предыдущего узла и посылает только последующему. Реализуется на физической топологии кольца и звезды.
Методы доступа к среде делятся на вероятностные и детерминированные.
При вероятностном методе доступа узел, желающий послать кадр в сеть, прослушивает линию. Если линия занята или обнаружена коллизия (столкновение сигналов от двух передатчиков), попытка передачи откладывается на некоторое время
Общий недостаток вероятностных методов доступа – неопределенное время прохождения кадра, резко возрастающее при увеличении нагрузки на сеть, что ограничивает его применение в системах реального времени.
При детерминированном методе узлы получают доступ к среде в предопределенном порядке. Последовательность определяется контроллером сети.
Основное преимущество метода – ограниченное время прохождения кадра, мало зависящее от нагрузки.
Сети с большой нагрузкой требуют более эффективных методов доступа. Один из способов повышения эффективности – перенос управления доступом от узлов в кабельные центры. При этом узел посылает кадр в коммуникационное устройство. Задача этого устройства – обеспечить прохождение кадра к адресату с оптимизацией общей производительности сети и обеспечением уровня качества обслуживания, требуемого конкретным приложением.
Глава 4. Режимы передачи и качество сервиса
Режим передачи определяет способ коммуникаций между двумя узлами.
- Симплексный режим позволяет передавать данные только в одном направлении, передающий узел полностью занимает канал. В телекоммуникациях такой режим практически не используется – он не позволяет отправителю информации получать подтверждение о его приеме, что необходимо для обеспечения нормальной связи.
- Полудуплексный режим допускает двустороннюю передачу, но в каждый момент времени только в одном направлении. Для смены направления требуется подача специального сигнала и получение подтверждения.
- Полнодуплексный режим допускает одновременную передачу сразу в двух направлениях. При этом передача в одном направлении занимает только часть канала. Дуплексный режим может быть симметричным (полоса пропускания канала в обоих направлениях одинакова) и несимметричным (пропускная способность в одном направлении значительно больше, чем в противоположном).
- Скорость передачи данных, определяется как количество бит данных, переданных за единицу времени.
- Задержка доставки данных, определяемая как время от передачи блока информации источником до его приема получателем.
- Уровень ошибок определяется либо как вероятность безошибочной передачи определенной порции данных (от бита до кадра).