Топология сети кольцевая схема

12. Кольцевые sdh-сети. Принцип самовосcтановления.

К современной цифровой первичной сети предъявляются повышенные требования в части параметров ее надежности. В связи с этим современные первичные сети строятся с использованием резервных трактов и коммутаторов, выполняющих оперативное переключение в случае неисправности на одном из каналов. В этом случае в состав системы передачи включаются цепи резервирования мультиплексорной секции (Multiplex Section Protection — MSP). Как было показано выше, в сети SDH осуществляется постоянный мониторинг параметров ошибки (процедура контроля четности BIP) и параметров связности. В случае значительного ухудшения качества передачи в мультиплексорной секции выполняется оперативное переключение (APS) на резервную мультиплексорную секцию. Это переключение выполняется коммутаторами. По типу резервирования различаются коммутаторы APS с архитектурой 1+1 и 1:n

Для управления резервным переключением используются байты К1 и К2 секционного заголовка. В байте К1 передается запрос на резервное переключение и статус удаленного конца тракта. В байте К2 передается информация о параметрах моста, используемого в APS с архитектурой 1:n, данные по архитектуре MSP и сообщения о неисправностях, связанные с APS. Различные варианты архитектуры MSP используются в различных схемах резервирования. Наибольшее распространение имеют две схемы, непосредственно связанные с кольцевой топологией сетей SDH -схема «горячего резервирования» (рис.1а) и схема распределенной нагрузки (рис.1b). В первом случае трафик передается как в прямом, так и в резервном направлении. В случае повреждения происходит реконфигурация и создается резервный канал. В схеме распределенной нагрузки половина графика передается в прямом, половина — в обратном направлении. В этом случае при возникновении неисправности происходит переключение на уровне ресурсов.

Время резервного переключения не должно превышать 50 мс. Рис.1.Схемы резервирования в системах SDH.

Топология «кольцо».

Эта топология (рис.2) широко используется для построения SDH сетей первых двух уровней SDH иерархии (155 и 622 Мбит/с). Основной плюс этой топологии — лёгкость организации защиты типа 1+1, благодаря наличию в синхронных мультиплексорах SMUX двух пар оптических каналов приёма/передачи: восток — запад, дающих возможность формирования двойного кольца со встречными потоками.

Рис. 2.Топология «кольцо» c защитой 1+1.

Архитектурные решения при проектировании сети SDH могут быть сформированы на базе использования рассмотренных выше элементарных топологий сети в качестве её отдельных сегментов.

Радиально-кольцевая архитектура.

Пример радиально-кольцевой архитектуры SDH сети приведён на рис.3.1. Эта сеть фактически построена на базе использования двух базовых топологий: «кольцо» и «последовательная линейная цепь».

Рис. 3.1.Радильно-кольцевая сеть SDH.

Архитектура типа «кольцо-кольцо».

Другое часто используемое в архитектуре сетей SDH решение — соединение типа «кольцо-кольцо». Кольца в этом соединении могут быть либо одинакового, либо разного уровней иерархии SDH. На рис.3.2 показана схема соединения двух колец одного уровня — STM-4, а на рис.3.3 каскадная схема соединения трёх колец — STM-1, STM-4, STM-16.

Читайте также:  Пассивное оборудование в вычислительных сетях

Рис. 3.2.Два кольца одного уровня.

Рис. 3.3.Каскадное соединение трёх колец.

13. Основные типы топологий локальных вычислительных сетей.

14. Иерархическая топология ЛВС и топология типа «звезда» в ЛВС.

15. Шинная топология ЛВС и кольцевая топология ЛВС. Особенности применения.

Топология, т.е. конфигурация соединения рабочих станций и других элементов в ЛВС, важнее чем другие характеристики сети, потому что топология определяет многие важные свойства сети, например такие, как надежность и производительность. Можно делить топологии на два основных класса: широковещательные(«broadcasting») ипоследовательные(«routing»).

  • а. Вшироковещательныхконфигурациях каждый ПК передает сигналы по сети, которые могут быть восприняты остальными ПК. К таким конфигурациям относятся:общая шина,дерево, извезда с пассивным центром(«passive hub»).
  • б. Впоследовательныхконфигурациях каждый физический подуровень передает информацию только одному ПК. К ним относятся:произвольная, иерархическая,кольцо, цепочка,звезда с «интеллектуальным» центром («active hub») и снежинка.

Источник

Топологии сети

Каждая рабочая станция сети соединена кабелем с другой рабочей станцией и одним или несколькими серверами. Слово топология означает схему физического расположения кабелей, соединяющих компьютеры в единую сеть. В целом существует три типа топологии компьютерной сети.

  • Шинная. Все компьютеры сети последовательно подключаются друг к другу. Сетевое соединение начинается с сервера и заканчивается последней системой в сети.
  • Звездообразная. Каждый компьютер в сети подключается к центральной точке доступа.
  • Кольцевая. Каждый компьютер в сети подключается к другим по кольцевой или контурной схеме.

Шинная топология

Иногда между двумя наиболее удаленными друг от друга рабочими станциями прокладывается один-единственный кабель, обходящий все остальные станции и серверы. Этот способ соединения называется шинной топологией (рис. 9). Однако такой способ соединения имеет существенный недостаток: если рабочая станция или кабель и соединения по каким-либо причинам выйдут из строя, все остальные объекты, расположенные дальше по линии, потеряют связь с сетью. Такая топология используется при создании локальной сети с помощью кабелей толстого и тонкого Ethernet. Тем не менее появление дешевых и более компактных неэкранированных кабелей типа витой пары, которые также подходят для быстрой передачи данных, делает предыдущий недостаток шинной топологии менее очевидным. При возникновении неполадок с определенным компьютером или кабельным соединением все станции, расположенные за этой системой, могут быть отключены от сети. Проблемы с тонкими Ethernet-сетями (10BASE-5) часто возникают из-за ослабления крепления устройства AUI к коаксиальному кабелю. Кроме того, Т-адаптеры и нагрузочные резисторы тонкой Ethernet-сети 10BASE-2 могут также разболтаться или же их отключит пользователь, тем самым нанеся серьезный вред функционированию всей сети или ее отдельных компонентов. Еще один недостаток 10BASE-T проявляется при подключении новой системы в сеть между уже установленными системами. В результате может потребоваться разделение сетевого кабеля между компьютерами на более короткие сегменты, что необходимо для подключения сетевой платы и Т-адаптера нового компьютера. Ðèñ. 9. В последовательной шинной топологии все сетевые устройства подсоединяются к одному кабелю

Читайте также:  Конспект на темы локально вычислительные сети

Кольцевая топология

В дискуссиях о сетях часто упоминается кольцевая топология, в которой каждая рабочая станция подключается к следующей, а последняя подключается к первой (похоже на шинную топологию с соединенными концами). Существует два основных типа сетей, использующих кольцевую топологию:

  • FDDI, в которой используется физическая кольцевая топология;
  • Token-Ring, использующая логическую кольцевую топологию.

На самом деле физически не обязательно, чтобы кабели соединялись кольцом. Фактически кольцо существует лишь внутри концентратора для Token Ring (так называемый модуль многопользовательского доступа (MultiStation Access Unit  MSAU)). Схема кольцевой топологии Token-Ring показана на рис. 10. Сигнал, посланный одним компьютером, попадает в концентратор, а из концентратора посылается следующему компьютеру, после чего снова попадает в концентратор. Таким образом, данные попадают в каждый компьютер, пока снова не доходят до посылавшего их компьютера, который извлекает их из кольца. Таким образом, хотя физическая топология проводов имеет вид звезды, данные в такой сети передаются по так называемому логическому кольцу. Логическое кольцо удобнее физической кольцевой топологии, поскольку такая система имеет более высокую отказоустойчивость. В шинной сети повреждение кабеля приводит к остановке всей сети. В Token Ring модуль многопользовательского доступа может просто отключить компьютер, в котором происходят сбои, от логического кольца, что позволит остальной сети продолжить работу. Ðèñ. 10. Передача данных в сети Token-Ring

Источник

1.4.3 Кольцевая топология

На рисунке 15 показан пример топологии ЛВС, в которой каждая рабочая станция соединена с двумя другими ра­бочими станциями. Такая топология на­зывается кольцом (ring).

Рисунок 15 – Кольцевая топология

Кольцевая топология применяется преимущест­венно в США для сетей, требующих выделения определенной части полосы пропускания для критичных по времени средств (например, для передачи видео и аудио), в высокопроизводительных сетях, а также при большом числе об­ращающихся к сети клиентов (что требует ее высокой пропускной способности). В сети с кольцевой топологией каж­дый компьютер соединяется со следующим компьютером, ретранслирующим ту информацию, которую он получает от первой машины. Благодаря такой ретрансляции сеть является активной, и в ней не возникают проблемы потери сигнала, как в сетях с шинной топологией. Кроме того, поскольку «конца» в кольцевой сети нет, никаких оконечных нагрузок не нужно.

Читайте также:  Компьютерные сети понятие назначение состав

Некоторые сети с кольцевой топологией используют метод доступа к среде на основе маркера (метод эстафетной передачи). Специальное короткое сообщение-маркер циркулирует по кольцу пока компьютер не пожелает пере­дать информацию другому узлу. Он модифицирует маркер, добавляет элек­тронный адрес и данные, а затем отправляет его по кольцу. Каждый из компью­теров последовательно получает данный маркер с добавленной информацией и передает его соседней машине, пока электронный адрес не совпадет с адресом компьютера-получателя, или маркер не вернется к отправителю. Получивший сообщение компьютер возвращает отправителю ответ, подтверждающий, что послание принято. Тогда отправитель создает еще один маркер и отправляет его в сеть, что позволяет другой станции перехватить маркер и начать передачу. Маркер циркулирует по кольцу, пока какая-либо из станций не будет готова к передаче и не захватит его.

Все эти события происходят очень часто: маркер может пройти кольцо с диаметром в 200 м примерно 10000 раз в секунду. В некоторых еще более бы­стрых сетях циркулирует сразу несколько маркеров. В других сетевых средах применяются два кольца с циркуляцией маркеров в противоположных направ­лениях. Такая структура способствует восстановлению сети в случае возникно­вения отказов.

Преимущества сети с кольцевой топологией:

  • поскольку всем компьютерам предоставляется равный доступ к маркеру, никто из них не сможет монополизировать сеть;
  • справедливое совместное использование сети обеспечивает постепенное снижение ее производительности в случае увеличения числа пользователей и перегрузки (лучше, если сеть будет продолжать функционировать, хотя и медленно, чем сразу откажет при превышении пропускной способности).

Недостатки сети с кольцевой топологией:

  • отказ одного компьютера в сети может повлиять на работоспособность всей сети;
  • кольцевую сеть трудно диагностировать;
  • добавление или удаление компьютера вынуждает разрывать сеть.

1.4.4 Смешанные топологии

На основе трех базовых топологий можно создавать так называемые гибридные или смешанные топологии. К этим топологиям от­носятся:

Шинно-звездообразная топология комбинирует сети типа «звезда» и «шина», связывая несколько концентраторов шинными магист­ралями (рисунок 16).

Рисунок 16 – Шинно-звездообразная топология

Если один из компьютеров отказывает, концентратор может выявить отказавший узел и изолировать неис­правную машину. При отказе концентратора соединенные с ним компьютеры не смогут взаимодействовать с сетью, а шина разомкнется на два не связанных друг с другом сегмента.

В звездообразно-кольцевой топологии (которую называют также кольцом с соединением типа «звезда») сетевые кабели прокладываются аналогично звез­дообразной сети, но в центральном концентраторе реализуется кольцо (рисунок 17).

Рисунок 17 – Звездообразно-кольцевая топология

С внутренним концентра­тором можно соединить внешние, тем самым, расширив петлю внутреннего кольца.

Большие, объединенные ВС используют топологию самого общего вида — ячеи­стую. Узлами ячеистой топологии могут быть самые разнообразные сетевые устройства: повторители, мосты, концентраторы, маршрутизаторы, шлюзы.

Источник

Оцените статью
Adblock
detector