Звезда
В сетях, использующих топологию «звезда», сетевой носитель соединяет центральный концентратор с каждым устройством, подключенным к сети. Физический вид топологии «звезда» напоминает радиальные спицы, исходящие из центра колеса. В этой топологии используется управление из центральной точки, а связь между устройствами, подключенными к сети, осуществляется посредством двухточечных линий между каждым устройством и центральным каналом или концентратором.
Весь сетевой трафик в звездообразной топологии проходит через концентратор. Вначале данные посылаются концентратору, а затем концентратор переправляет их устройству в соответствии с адресом, содержащимся в данных.
В сетях с топологией «звезда» концентратор может быть активным или пассивным. Активный концентратор не только соединяет участки среды передачи, но и регенерирует сигнал, т.е. работает как многопортовый повторитель. Благодаря выполнению регенерации сигналов, активный концентратор позволяет данным перемешаться на более значительные расстояния. В отличие от активного концентратора, пассивный только соединяет участки сетевой среды передачи данных.
Большинство проектировщиков сетей считают топологию «звезда» самой простой с точки зрения проектирования и установки. Это объясняется тем, что сетевая среда выходит непосредственно из концентратора и прокладывается к месту установки рабочей станции. Другим достоинством этой топологии является простота обслуживания: единственной областью концентрации является центр сети. Также топология «звезда» позволяет легко диагностировать проблемы и изменять схему прокладки. Кроме того, к сети, использующей топологию «звезда», легко добавлять рабочие станции. Если один из участков сетевой среды передачи данных обрывается или закорачивается, то теряет связь только устройство, подключенное к этой точке. Остальная часть сети будет функционировать нормально. Короче говоря, топология «звезда» считается наиболее надежной.
В некотором смысле достоинства топологии «звезда» могут считаться и ее недостатками. Например, наличие отдельного отрезка кабеля для каждого устройства позволяет легко диагностировать отказы, однако, это же приводит и к увеличению количества отрезков. В результате повышается стоимость установки сети с топологией «звезда». Другой пример: концентратор может упростить обслуживание, поскольку все данные проходят через эту центральную точку; однако, если концентратор выходит из строя, то перестает работать вся сеть.
Топологии
Вы узнали из предыдущей темы, что канальный уровень подготавливает сетевые данные для физической сети. Он должен знать логическую топологию сети, чтобы иметь возможность определить, что необходимо для передачи кадров с одного устройства на другое. В этом разделе объясняется, как канальный уровень связи данных работает с различными логическими топологиями сети.
Топология сети описывает расположение или взаимосвязь сетевых устройств, а также соединения между ними.
Существует два типа топологий, используемых при описании сетей LAN и WAN:
- Физическая топология – Этот термин относится к физическим соединениям и определяет, каким образом соединяются друг с другом оконечные устройства и устройства сетевой инфраструктуры, такие как маршрутизаторы, коммутаторы и точки беспроводного доступа. Топология может также включать определенное местоположение устройства, например номер комнаты и местоположение на стойке оборудования. Физическая топология чаще всего организована по схеме «точка-точка» или «звезда».
- Логическая топология – Термин, используемый для описания путей передачи кадров между узлами. Эта топология определяет виртуальные подключения с использованием интерфейсов устройств и схем IP-адресации уровня 3.
При управлении доступом данных к среде канальный уровень «видит» логическую топологию сети. Именно логическая топология влияет на выбор типа кадрирования в сети и управления доступом к среде.
На рисунке отображается образец физической топологии для небольшой выборки сети.
Топология физической сети показывает шесть комнат, каждая из которых выделена светло-желтым прямоугольником, с различными сетевыми устройствами и кабелями. С левой стороны находится серверная комната с надписью комната 2158. Он содержит маршрутизатор с маркировкой R1, установленный на полке 1 стойки 1 с шестью кабельными соединениями. Кабель в верхней части подключается к облаку с надписью Интернет. Кабель слева подключается к коммутатору с надписью S1, установленному на полке 2 стойки 1. S1 подключен к трем серверам: веб-серверу, установленному на полке 1 стойки 2, почтовому серверу, установленному на полке 2 стойки, и файловому серверу, установленному на полке 3 стойки 2. Кабель, подключенный к нижней части R1, подключается к коммутатору с пометкой S2 установлен на стойке 1 полка 3. S2 имеет два соединения, ведущие к принтеру и ПК в ИТ-офисе с пометкой комната 2159. R1 имеет три кабеля справа, подключенных к трем коммутаторам, расположенным в комнате 2124. Верхний коммутатор имеет маркировку S3 и установлен на полке 1 стойки 1. Средний переключатель имеет маркировку S4 и установлен на стойке 1 полка 2. Нижний выключатель имеет маркировку S5 и установлен на стойке 1 полка 3. S3 имеет кабель слева подключен к ноутбуку в комнате класса 1 комната 2125. S4 имеет кабель слева подключен к ноутбуку в комнате класса 2 комната 2126. S5 имеет кабель слева подключен к ноутбуку в комнате класса 3 комната 2127.
На следующем рисунке показан пример logical топологии для той же сети.
В логической топологии сети отображаются устройства, метки портов и схема сетевой адресации. В середине изображения находится маршрутизатор с надписью R1. Порт с надписью G0/0/0 подключается к облаку в верхней части помеченного Интернета. Порт с надписью G0/2/0 подключается слева к коммутатору с надписью S1 на порту G0/1. S1 подключен к трем серверам. S1 и серверы подсвечены светло-желтым кругом с сетью 192.168.10.0/24, написанной вверху. Порт F0/1 на S1 подключается к веб-серверу. Порт F0/2 на S1 подключается к почтовому серверу. Порт F0/3 на S1 подключается к файловому серверу. Порт G0/0/1 на R1 соединяется внизу к коммутатору с надписью S2. S2 подключается к принтеру и ПК, все из которых выделены в светло-желтый круг с сетью 192.168.11.0/24, написанной внизу. Справа от R1 расположены три дополнительных соединения, каждое из которых подключается к коммутатору на порту G0/1, который затем подключается к ноутбуку на порту F0/1. Каждый коммутатор и ноутбук выделены желтым цветом, а сетевой адрес отображается. Порт G0/0/1 R1 подключается вверху к коммутатору с меткой S3 в сети 192.168.100.0. Порт G0/1/0 R1 соединяется посередине с коммутатором S4 в сети 192.169.101.0. Порт G0/1/1 на R1 подключается внизу к коммутатору с надписью S5 в сети 192.168.102.0. R1 подключается к Интернету по интерфейсу G0/0/0.