Виды информационно-вычислительных сетей
ИВС в зависимости от территории, ими охватываемой, подразделяются на:
- локальные (ЛВС или LAN – Local Area Network);
- региональные (РВС или MAN – Metropolitan Area Network);
- глобальные (ГВС или WAN – Wide Area Network).
Локальной называется сеть, абоненты которой находятся на небольшом (до 10-15 км) расстоянии друг от друга. ЛВС объединяет абонентов, расположенных в пределах небольшой территории. В настоящее время не существует четких ограничений на территориальный разброс абонентов локальной вычислительной сети. Обычно такая сеть привязана к конкретному объекту. К классу ЛВС относятся сети отдельных предприятий, фирм, банков, офисов, корпораций и т.д. Если такие ЛВС имеют абонентов, расположенных в разных помещениях, то они (сети) часто используют инфраструктуру глобальной сети Интернет, и их принято называть корпоративными сетями или сетями интранет (Intranet). Региональные сети связывают абонентов города, района, области или даже небольшой страны. Обычно расстояния между абонентами региональной ИВС составляют десятки – сотни километров. Глобальные сети объединяют абонентов, удаленных друг от друга на значительное расстояние, часто находящихся в различных странах или на разных континентах. Взаимодействие между абонентами такой сети может осуществляться на базе телефонных линий связи, систем радиосвязи и даже спутниковой связи. Объединение глобальных, региональных и локальных вычислительных сетей позволяет создавать многосетевые иерархии. Они обеспечивают мощные, экономически целесообразные средства обработки огромных информационных массивов и доступ к неограниченным информационным ресурсам. Локальные вычислительные сети могут входить как компоненты в состав региональной сети, региональные сети – объединяться в составе глобальной сети и, наконец, глобальные сети могут также образовывать сложные структуры. Именно такая структура принята в наиболее известной и популярной сейчас всемирной суперглобалыюй информационной сети Интернет. По принципу организации передачи данных сети можно разделить на две группы:
- последовательные;
- широковещательные.
В последовательных сетях передача данных выполняется последовательно от одного узла к другому, и каждый узел ретранслирует принятые данные дальше. Практически все глобальные, региональные и многие локальные сети относятся к этому типу. Вшироковещательных сетях в каждый момент времени передачу может вести только один узел, остальные узлы могут только принимать информацию. К такому типу сетей относится значительная часть ЛВС, использующая один общий канал связи (моноканал) или одно общее пассивное коммутирующее устройство. По геометрии построения (топологии) ИВС могут быть:
- шинные (линейные, bus);
- кольцевые (петлевые, ring);
- радиальные (звездообразные, star);
- ячеистые (распределенные радиальные, сотовые, cellular);
- полносвязные (сетка, mesh);
- иерархические (древовидные, hierarchy);
- смешанные (гибридные).
Сети с шинной топологией используют линейный моноканал передачи данных, к которому все узлы подсоединены через интерфейсные платы посредством относительно коротких соединительных линий. Данные от передающего узла сети распространяются по шине в обе стороны. Промежуточные узлы не ретранслируют поступающих сообщений. Информация поступает на все узлы, но принимает сообщение только тот, которому оно адресовано. Шинная топология – одна из наиболее простых топологий. Применение общей шины снижает стоимость проводки, обеспечивает возможность почти мгновенного широковещательного обращения ко всем станциям сети. Таким образом, основными преимуществами такой схемы являются дешевизна и простота разводки кабеля по помещениям. Самый серьезный недостаток общей шины заключается в ее низкой надежности: любой дефект кабеля или какого-нибудь из многочисленных разъемов полностью парализует всю сеть. К сожалению, дефект коаксиального разъема редкостью не является. Другим недостатком общей шины является ее невысокая производительность, так как при таком способе подключения в каждый момент времени только один компьютер может передавать данные в сеть. Поэтому пропускная способность канала связи всегда делится здесь между всеми узлами сети. В сети с кольцевой топологией все узлы соединены в единую замкнутую петлю (кольцо) каналами связи. Выход одного узла сети соединяется со входом другого. Информация по кольцу передается от узла к узлу и каждый узел ретранслирует посланное сообщение. В каждом узле для этого имеются свои интерфейсная и приемо-передающая аппаратура, позволяющая управлять прохождением данных в сети. Передача данных по кольцу с целью упрощения приемо-передающей аппаратуры выполняется только в одном направлении. Принимающий узел распознает и получает только адресованные ему сообщения. В сети с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какой-либо станции не прервался канал связи между остальными станциями. Кольцо представляет собой очень удобную конфигурацию для организации обратной связи – данные, сделав полный оборот, возвращаются к узлу-источнику. Поэтому этот узел может контролировать процесс доставки данных адресату. Ввиду своей гибкости и надежности работы сети с кольцевой топологией получили также широкое распространение на практике (например, сеть Token Ring). Полносвязная топология соответствует сети, в которой каждый компьютер сети связан со всеми остальными. Несмотря на логическую простоту, этот вариант оказывается громоздким и неэффективным. Действительно, каждый компьютер в сети должен иметь большое количество коммуникационных портов, достаточное для связи с каждым из остальных компьютеров сети. Для каждой пары компьютеров должна быть выделена отдельная электрическая линия связи. Полносвязные топологии применяются редко. Чаще этот вид топологии используется в многомашинных комплексах или глобальных сетях при небольшом количестве компьютеров. Все другие варианты основаны на неполносвязных топологиях, когда для обмена данными между двумя компьютерами может потребоваться промежуточная передача данных через другие узлы сети. Ячеистая топология получается из полносвязной путем удаления некоторых возможных связей. В сети с ячеистой топологией непосредственно связываются только те компьютеры, между которыми происходит интенсивный обмен данными, а для обмена данными между компьютерами, не соединенными прямыми связями, используются транзитные передачи через промежуточные узлы. Ячеистая топология допускает соединение большого количества компьютеров и характерна, как правило, для глобальных сетей. Основу последовательной сети с радиальной топологией составляет специальный компьютер – сервер, к которому подсоединяются рабочие станции, каждая по своей линии связи. Каждый сетевой компьютер подключается отдельным кабелем к общему устройству, называемому концентратором, который находится в центре сети. В функции концентратора входит направление передаваемой компьютером информации одному или всем остальным компьютерам сети. Вся информация передается через центральный узел, который ретранслирует, переключает и маршрутизирует информационные потоки в сети. По своей структуре такая сеть по существу является аналогом системы телеобработки, у которой все абонентские пункты являются интеллектуальными (содержат в своем составе компьютер). Главное преимущество этой топологии перед общей шиной – существенно большая надежность. Любые неприятности с кабелем касаются лишь того компьютера, к которому этот кабель присоединен, и только неисправность концентратора может вывести из строя всю сеть. Кроме того, концентратор может играть роль интеллектуального фильтра информации, поступающей от узлов в сеть, и при необходимости блокировать запрещенные администратором передачи. В качестве недостатков такой сети можно отметить:
- большую загруженность центральной аппаратуры;
- полную потерю работоспособности сети при отказе центральной аппаратуры;
- большую протяженность линий связи;
- отсутствие гибкости в выборе пути передачи информации.
Последовательные радиальные сети используются в офисах с явно выраженным централизованным управлением. Часто сеть строится с использованием нескольких концентраторов, иерархически соединенных между собой связями типа звезда. В настоящее время иерархическая звезда является самым распространенным типом топологии связей как в локальных, так и глобальных сетях. Реально большинство сетей крупных организаций построены по либо по иерархической, либо по смешанной топологии. Иерархические сети, конечно же более удобны в управлении. В структуре сети можно выделить коммуникационную и абонентскую подсети. Коммуникационная подсеть является ядром ИВС, связывающим рабочие станции и серверы друг с другом. Звенья коммуникационной подсети связаны между собой магистральными каналами связи, обладающими высокой пропускной способностью. В больших сетях коммуникационную подсеть часто называют сетью передачи данных. Звенья абонентской подсети (хост-компьютеры 1 , серверы, рабочие станции) подключаются к узлам коммутации абонентскими каналами связи – обычно это среднескоростные каналы связи. В зависимости от используемой коммуникационной среды сети делятся на сети с моноканалом, а также иерархические, полносвязные сети и сети со смешанной топологией.
- В сетях с моноканалом данные могут следовать только по одному и тому же пути; в них доступ абонентов к информации осуществляется на основе селекции (выбора) передаваемых кадров или пакетов данных по адресной части последних. Все пакеты доступны всем пользователям сети, но «вскрыть» пакет может только тот абонент, чей адрес в пакете указан. Такие сети иногда называют сетями с селекцией информации.
- Иерархические, полносвязные и сети со смешанной топологией в процессе передачи данных требуют маршрутизации последней, то есть выбора в каждом узле пути дальнейшего движения информации. Правда, альтернативная неоднозначная маршрутизация выполняется только в сетях, имеющих замкнутые контуры каналов связи (ячеистую структуру). Такие сети называются сетями с маршрутизацией информации.
Для продолжения скачивания необходимо пройти капчу:
Вопрос 14. Классификация локальных вычислительных сетей
• по способу организаиии управления однородные вычислительные сети подразделяются на:
• сети с централизованным управлением; они имеют центральную ЭВМ, управляющую их работой, и характеризуются простотой обеспечения взаимодействия между ЭВМ. Применение таких сетей целесообразно при небольшом числе абонентских систем;
• сети с децентрализованным, распределенным управлением; в них функции управления распределены между системами сети Применение таких систем целесообразно при большом числе абонентских систем;
*/ по характеру организаиии передачи данных ЛВС подразделяются на»
• сети с маршрутизацией информации В них абонентские системы могут взаимодействовать по различным маршрутам передачи блоков данных;
• сети с селекцией информации. В них взаимодействие абонентских систем производится выбором (селекцией) адресованных им блоков данных;
• по характеру физической среды различают сети, физической средой которых могут быть: /
• коаксиальный кабель (наиболее распространенная в настоящее время среда);
• по методу управления средой передачи данных различают сети с методом детерминированного и случайного доступа к моноканалу.
2. Выделяют несколько причин популярности ЛВС.
• повсеместное распространение персональных компьютеров — относительно недорогой и высокопроизводительной техники, с помощью которой решаются сложные задачи управления;
• потребность пользователей персональных компьютеров обмениваться информацией; совместно использовать общие сетевые программные, аппаратные и информационные ресурсы; получать доступ к ресурсам вычислительных сетей других организаций;
• появление на рынке широкого спектра аппаратных и программных коммуникационных средств, позволяющих легко объединять отдельные персональные компьютеры в вычислительную сеть;
• возможность более экономного использования в сети относительно дорогих ресурсов;
• возможность повышения производительности труда за счет введения в сети специализированных компонентов, таких как файл-серверы, серверы баз данных и др.
Развитие ЛВС привело к возникновению более крупных корпоративных сетей, а развитие последних — к появлению сети Internet, объединяющей в себе множество глобальных сетей.
3. Особенности ЛВС:
• наличие единого для всех абонентов сети высокоскоростного канала связи, способного передавать самую разнообразную информацию;
• отсутствие значительных помех, а поэтому достаточно большая достоверность передаваемой информации;
• возможность включения в состав сети разнообразных и независимых устройств;
• достаточно простая возможность изменения конфигурации сети и среды передачи.