Уровне модели osi работает маршрутизатор

Теория:Сетевая модель OSI

Сетевая модель OSI (open systems interconnection basic reference model — базовая эталонная модель взаимодействия открытых систем, сокр. ЭМВОС; 1978 год) — сетевая модел стека сетевых протоколов OSI/ISO (ГОСТ Р ИСО/МЭК 7498-1-99).

  • 1 Общая характеристика модели OSI
  • 2 Уровни модели OSI
    • 2.1 Прикладной уровень
    • 2.2 Уровень представления
    • 2.3 Сеансовый уровень
    • 2.4 Транспортный уровень
    • 2.5 Сетевой уровень
    • 2.6 Канальный уровень
    • 2.7 Физический уровень
    • 3.1 Семейство TCP/IP
    • 3.2 Семейство IPX/SPX

    Общая характеристика модели OSI

    В связи с затянувшейся разработкой протоколов OSI, в настоящее время основным используемым стеком протоколов является TCP/IP, разработанный ещё до принятия модели OSI и вне связи с ней.

    К концу 70-х годов в мире уже существовало большое количество фирменных стеков коммуникационных протоколов, среди которых можно назвать, например, такие популярные стеки, как DECnet, TCP/IP и SNA. Подобное разнообразие средств межсетевого взаимодействия вывело на первый план проблему несовместимости устройств, использующих разные протоколы. Одним из путей разрешения этой проблемы в то время виделся всеобщий переход на единый, общий для всех систем стек протоколов, созданный с учетом недостатков уже существующих стеков. Такой академический подход к созданию нового стека начался с разработки модели OSI и занял семь лет (с 1977 по 1984 год). Назначение модели OSI состоит в обобщенном представлении средств сетевого взаимодействия. Она разрабатывалась в качестве своего рода универсального языка сетевых специалистов, именно поэтому её называют справочной моделью.В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представления, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с совершенно определенным аспектом взаимодействия сетевых устройств.

    Приложения могут реализовывать собственные протоколы взаимодействия, используя для этих целей многоуровневую совокупность системных средств. Именно для этого в распоряжение программистов предоставляется прикладной программный интерфейс (Application Program Interface, API). В соответствии с идеальной схемой модели OSI приложение может обращаться с запросами только к самому верхнему уровню — прикладному, однако на практике многие стеки коммуникационных протоколов предоставляют возможность программистам напрямую обращаться к сервисам, или службам, расположенных ниже уровней. Например, некоторые СУБД имеют встроенные средства удаленного доступа к файлам. В этом случае приложение, выполняя доступ к удаленным ресурсам, не использует системную файловую службу; оно обходит верхние уровни модели OSI и обращается непосредственно к ответственным за транспортировку сообщений по сети системным средствам, которые располагаются на нижних уровнях модели OSI. Итак, пусть приложение узла А хочет взаимодействовать с приложением узла В. Для этого приложение А обращается с запросом к прикладному уровню, например к файловой службе. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата. Но для того, чтобы доставить эту информацию по назначению, предстоит решить еще много задач, ответственность за которые несут нижележащие уровни. После формирования сообщения прикладной уровень направляет его вниз по стеку уровню представления. Протокол уровня представления на основании информации, полученной из заголовка сообщения прикладного уровня, выполняет требуемые действия и добавляет к сообщению собственную служебную информацию — заголовок уровня представления, в котором содержатся указания для протокола уровня представления машины-адресата. Полученное в результате сообщение передается вниз сеансовому уровню, который, в свою очередь, добавляет свой заголовок и т. д. (Некоторые реализации протоколов помещают служебную информацию не только в начале сообщения в виде заголовка, но и в конце в виде так называемого концевика.) Наконец, сообщение достигает нижнего, физического, уровня, который, собственно, и передает его по линиям связи машине-адресату. К этому моменту сообщение «обрастает» заголовками всех уровней.

    Физический уровень помещает сообщение на физический выходной интерфейс компьютера 1, и оно начинает своё «путешествие» по сети (до этого момента сообщение передавалось от одного уровню другому в пределах компьютера 1). Когда сообщение по сети поступает на входной интерфейс компьютера 2, оно принимается его физическим уровнем и последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует и обрабатывает заголовок своего уровня, выполняя соответствующие функции, а затем удаляет этот заголовок и передает сообщение вышележащему уровню. Как видно из описания, протокольные сущности одного уровня не общаются между собой непосредственно, в этом общении всегда участвуют посредники — средства протоколов нижележащих уровней. И только физические уровни различных узлов взаимодействуют непосредственно.

    Уровни модели OSI

    Модель OSI
    Уровень (layer) ) Функции Примеры
    Host
    layers
    7. Прикладной (application) Доступ к сетевым службам HTTP, FTP, SMTP
    6. Представительский (представления) (presentation) Представление и шифрование данных ASCII, EBCDIC, JPEG
    5. Сеансовый (session) Управление сеансом связи RPC, PAP
    4. Транспортный (transport) Сегменты (segment)/
    Дейтаграммы (datagram)
    Прямая связь между конечными пунктами и надежность TCP, UDP, SCTP
    layers 3. Сетевой (network) Пакеты (packet) Определение маршрута и логическая адресация IPv4, IPv6, IPsec, AppleTalk
    2. Канальный (data link) Биты (bit)/
    Кадры (frame)
    Физическая адресация PPP, IEEE 802.2, Ethernet, DSL, L2TP, ARP
    1. Физический (physical) Биты (bit) Работа со средой передачи, сигналами и двоичными данными USB, витая пара, коаксиальный кабель, оптический кабель

    В литературе наиболее часто принято начинать описание уровней модели OSI с 7-го уровня, называемого прикладным, на котором пользовательские приложения обращаются к сети. Модель OSI заканчивается 1-м уровнем — физическим, на котором определены стандарты, предъявляемые независимыми производителями к средам передачи данных:

    • тип передающей среды (медный кабель, оптоволокно, радиоэфир и др.),
    • тип модуляции сигнала,
    • сигнальные уровни логических дискретных состояний (нуля и единицы).

    Любой протокол модели OSI должен взаимодействовать либо с протоколами своего уровня, либо с протоколами на единицу выше и/или ниже своего уровня. Взаимодействия с протоколами своего уровня называются горизонтальными, а с уровнями на единицу выше или ниже — вертикальными. Любой протокол модели OSI может выполнять только функции своего уровня и не может выполнять функций другого уровня, что не выполняется в протоколах альтернативных моделей.

    Каждому уровню с некоторой долей условности соответствует свой операнд — логически неделимый элемент данных, которым на отдельном уровне можно оперировать в рамках модели и используемых протоколов: на физическом уровне мельчайшая единица — бит, на канальном уровне информация объединена в кадры, на сетевом — в пакеты (датаграммы), на транспортном — в сегменты. Любой фрагмент данных, логически объединённых для передачи — кадр, пакет, датаграмма — считается сообщением. Именно сообщения в общем виде являются операндами сеансового, представительского и прикладного уровней.

    К базовым сетевым технологиям относятся физический и канальный уровни.

    Прикладной уровень

    Прикладной уровень (уровень приложений; application layer) — верхний уровень модели, обеспечивающий взаимодействие пользовательских приложений с сетью:

    • позволяет приложениям использовать сетевые службы:
      • удалённый доступ к файлам и базам данных,
      • пересылка электронной почты;

      Источник

      1.16. Маршрутизаторы. Их место в сетевой модели osi.

      Среди протоколов канального уровня некоторые обеспечивают доставку данных в сетях с произвольной топологией, но только между парой соседних узлов (например, протокол PPP), а некоторые — между любыми узлами (например, Ethernet), но при этом сеть должна иметь топологию определенного и весьма простого типа, например, древовидную.

      При объединении в сеть нескольких сегментов с помощью мотов или коммутаторов продолжают действовать ограничения на ее топологию: в получившейся сети должны отсутствовать петли. Действительно, мост или его функциональный аналог — коммутатор — могут решать задачу доставки пакета адресату только тогда, когда между отправителем и получателем существует единственный путь. В то же время наличие избыточных связей, которые и образуют петли, часто необходимо для лучшей балансировки нагрузки, а также для повышения надежности сети за счет существования альтернативного маршрута в дополнение к основному.

      Сетевой уровень позволяет передавать данные между любыми, произвольно связанными узлами сети.

      Реализация протокола сетевого уровня подразумевает наличие в сети специального устройства — маршрутизатора. Маршрутизаторы объединяют отдельные сети в общую составную сеть. К каждому маршрутизатору могут быть присоединены несколько сетей (по крайней мере две).

      Маршрутиза́тор или ро́утер (от англ. router) — сетевое устройство, на основании информации о топологии сети и определённых правил принимающее решения о пересылке пакетов сетевого уровня модели OSI между различными сегментами сети. Работает на более высоком уровне, нежели коммутатор и является более совершенным по своей функциональности, чем сетевой мост.

      Зам.Маршрутиза́тор – устройство, имеющее более одного сетевого интерфейса. (В.В. Кузнецов).

      В сложных составных сетях почти всегда существует несколько альтернативных маршрутов для передачи пакетов между двумя конечными узлами. Задачу выбора маршрутов из нескольких возможных решают маршрутизаторы, а также конечные узлы.

      Маршрут — это последовательность маршрутизаторов, которые должен пройти пакет от отправителя до пункта назначения.

      Маршрутизатор выбирает маршрут на основании своего представления о текущей конфигурации сети и соответствующего критерия выбора маршрута. Обычно в качестве критерия выступает время прохождения маршрута, которое в локальных сетях совпадает с длиной маршрута, измеряемой в количестве пройденных узлов маршрутизации (в глобальных сетях принимается в расчет и время передачи пакета по каждой линии связи).

      Для того, чтобы иметь информацию о текущей конфигурации сети, маршрутизаторы обмениваются маршрутной информацией между собой по специальному протоколу. Протоколы этого типа называются протоколами обмена маршрутной информацией (или протоколами маршрутизации).

      1.17. Понятие маршрута. Принципы построения таблиц маршрутизации.

      Сетевой уровень позволяет передавать данные между любыми, произвольно связанными узлами сети. Реализация протокола сетевого уровня подразумевает наличие в сети специального устройства — маршрутизатора. Маршрутизаторы объединяют отдельные сети в общую составную сеть. К каждому маршрутизатору могут быть присоединены несколько сетей (по крайней мере две).

      Маршрут — это последовательность маршрутизаторов, которые должен пройти пакет от отправителя до пункта назначения.

      В стеке TCP/IP маршрутизаторы и конечные узлы принимают решения о том, кому передавать пакет для его успешной доставки узлу назначения, на основании так называемых таблиц маршрутизации (routing tables). В этой таблице в столбце «Адрес сети назначения» указываются адреса всех сетей, которым данный маршрутизатор может передавать пакеты. В каждой строке таблицы маршрутизации указывается один IP-адрес — адрес следующего маршрутизатора, которому нужно передать пакет. В случае, если в таблице маршрутов имеется более одной строки, соответствующей одному и тому же адресу сети назначения, то при принятии решения о передаче пакета используется та строка, в которой указано наименьшее значение в поле «Расстояние до сети назначения». При этом под расстоянием понимается любая метрика, используемая в соответствии с заданным в сетевом пакете классом сервиса.

      Существуют различные алгоритмы построения таблиц для одношаговой маршрутизации. Их можно разделить на три класса:

      • алгоритмы фиксированной маршрутизации,
      • алгоритмы простой маршрутизации,
      • алгоритмы адаптивной маршрутизации.
      • Случайная маршрутизация — пакеты передаются в любом, случайном направлении, кроме исходного.
      • Лавинная маршрутизация — пакеты передаются во всех направлениях, кроме исходного (применяется в мостах для пакетов с неизвестным адресом доставки).
      • Маршрутизация по предыдущему опыту — таблицы маршрутов составляются на основании данных, содержащихся в проходящих через маршрутизатор пакетах. Именно так работают прозрачные мосты, собирая сведения об адресах узлов, входящих в сегменты сети. Такой способ маршрутизации обладает медленной адаптируемостью к изменениям топологии сети.

      Источник

      Читайте также:  Рекомендованный роутер домашний интернет билайн
Оцените статью
Adblock
detector