Сетевая модель данных
Как и в случае иерархической модели, сетевую структуру можно описать в терминах исходных и порождаемых узлов, а также представить ее таким образом, чтобы порожденные узлы располагались ниже исходных. При рассмотрении некоторых сетевых структур можно говорить об уровнях. Так, рассмотренная выше сетевая структура имеет три уровня.
База данных с сетевой структурой состоит из нескольких областей. Каждая область состоит из записей, которые состоят из полей. Объединение записей в логическую структуру возможно не только по областям, но и с помощью наборов данных. По существу набор данных — это поименованное двухуровневое дерево, которое является основой для построения многоуровневых деревьев. Сама база данных состоит из некоторой совокупности наборов данных. Набор данных — это экземпляр поименованной совокупности записей. Каждый тип набора представляет собой отношение между двумя или несколькими типами записей. Для каждого набора данных один тип записи может быть объявлен владельцем, а один или несколько типов других записей — членами набора. Набор данных, например, можно использовать для объединения записей о студентах одной группы. Тогда тип набора можно определить как состав группы с типом записи владельца. Например, Учебная группа с типом записей членов Студент: Учебная группа (запись-владельца) — Студент (совокупность записей о сту дентах в данной группе).
Набор данных имеет следующие свойства:
Набор данных есть поименованная совокупность связанных записей.
В каждом экземпляре набора данных имеется только один экземпляр записи владельца.
Экземпляр набора может содержать 0,1 или несколько записей-членов.
Набор данных считается пустым, если ни один экземпляр записи-члена не связан с соответствующим экземпляром записи владельца.
Экземпляр набора данных связан с записью владельца.
Тип набора предполагает логическую взаимосвязь 1:M между владельцем и членом набора.
Каждому типу набора данных присваивается имя, которое позволяет одной и той же паре типов объектов участвовать в нескольких взаимосвязях.
Концепция сетевой модели данных связана с именем Ч. Бахмана, известного специалиста в области обработки данных, который оказал определяющее влияние на создание проекта DBTG CODASYL (1971 год). Сетевая модель данных является моделью объектов-связей, где допускаются только бинарные связи типа «многие-к-одному», что позволяет использовать для представления данных простую модель ориентированных графов. В некоторых определениях сетевой модели допускаются связи типа «многие-ко-многим», но требование бинарности связи остается в силе.
Для сетевой модели не существует общепринятой терминологии. Далее используется сложившая к настоящему времени группа понятий и терминов, которые используются для описания элементов сетевой модели.
Для моделирования представления данных в сетевой модели используются следующие элементы данных:
простое поле (элемент данных, итем) — наименьшая единица структуры данных, имеет уникальное имя, размер и тип: (табельный номер служащего);
множественное поле (агрегат данных, периодическая группа) — поименованная совокупность простых полей или агрегатов; (простой агрегат: Дата = (день, месяц, год)), (составной агрегат: Организация = (наименование, адрес = (почтовый_индекс, город, улица, дома_номер))), (повторяющаяся группа: зарплата (12) = (ФИО, оклад));
запись (группа данных) — поименованный агрегат, который не входит в состав никакого другого агрегата и представляет сущность ПО БД (тип записи);
групповое отношение (связь, набор) — иерархическое отношение между различными записями (графическое представление группового отношения в сетевой модели называется диаграммой Бахмана);
БД — совокупность записей различного типа, объединенная системой групповых отношений различной направленности.
3.2.2 Сетевая модель данных
Сетевая модель данных — логическая модель данных, являющаяся расширением иерархического подхода, строгая математическая теория, описывающая структурный аспект, аспект целостности и аспект обработки данных в сетевых базах данных.
Разница между иерархической моделью данных и сетевой состоит в том, что в иерархических структурах запись-потомок должна иметь в точности одного предка, а в сетевой структуре данных у потомка может иметься любое число предков.
В сетевой структуре при тех же понятиях уровень, узел, связь, каждый элемент может быть связан с любым другим элементом.
Сетевая модель СУБД во многом подобна иерархической: если в иерархической модели для каждого сегмента записи допускается только один входной сегмент при N выходных, то в сетевой модели для сегментов допускается несколько входных сегментов наряду с возможностью наличия сегментов без входов с точки зрения иерархической структуры.
Графическое изображение структуры связей сегментов такого типа моделей представляет собой сеть. Сегменты данных в сетевых БД могут иметь множественные связи с сегментами старшего уровня. При этом направление и характер связи в сетевых БД не являются столь очевидными, как в случае иерархических БД. Поэтому имена и направление связей должны идентифицироваться при описании БД.
Таким образом, под сетевой БД понимается система, поддерживающая сетевую организацию: любая запись, называемая записью старшего уровня, может содержать данные, которые относятся к набору других записей, называемых записями подчиненного уровня. Возможно обращение ко всем записям в наборе, начиная с записи старшего уровня. Обращение к набору записей реализуется по указателям.
Сетевые БД поддерживают сложные соотношения между типами данных, что делает их пригодными во многих различных приложениях. Однако пользователи таких БД ограничены связями, определенными для них разработчиками БД-приложений. Среди недостатков сетевых СУБД следует особо выделить проблему обеспечения сохранности информации в БД, решению которой уделяется повышенное внимание при проектировании сетевых БД.
Достоинства сетевой модели данных:
1)эффективное использование памяти;
Недостатки сетевой модели данных:
1) сложность доступа к элементам (навигационный принцип доступа);
2) сложно отследить смысл такой модели данных.
Сетевая модель данных изображена на рисунке 3.4.
Рисунок 3.4 – Сетевая модель данных
3.2.3 Реляционная модель данных
Реляционная модель данных — логическая модель данных, прикладная теория, описывающая структурный аспект, аспект целостности и аспект обработки данных в реляционных базах данных. Понятие реляционный связано с разработками известного американского специалиста в области систем баз данных, сотрудника фирмы IBM Е. Кодда, которым впервые был применен термин «реляционная модель данных».
Термин «реляционный» означает, что теория основана на математическом понятии отношение (relation). В качестве неформального синонима термину «отношение» часто встречается слово таблица
В течение долгого времени реляционный подход рассматривался как удобный формальный аппарат анализа баз данных, не имеющий практических перспектив, так как его реализация требовала слишком больших машинных ресурсов. Только с появлением персональных ЭВМ реляционные и близкие к ним системы стали распространяться, практически не оставив места другим моделям.
Эти модели характеризуются простотой структуры данных, удобным для пользователя табличным представлением и возможностью использования формального аппарата алгебры отношений и реляционного исчисления для обработки данных.
Реляционная модель ориентирована на организацию данных в виде двумерных таблиц. Каждая реляционная таблица представляет собой двумерный массив и обладает следующими свойствами:
- каждый элемент таблицы — один элемент данных; повторяющиеся группы отсутствуют;
- все столбцы в таблице однородные, т.е. все элементы в столбце имеют одинаковый тип (числовой, символьный и т.д.) и длину;
- каждый столбец имеет уникальное имя;
- одинаковые строки в таблице отсутствуют;
- порядок следования строк и столбцов может быть произвольным.
Таблица такого рода называется отношением.
База данных, построенная с помощью отношений, называется реляционной базой данных.
Отношения представлены в виде таблиц, строки которых соответствуют записям, а столбцы – полям.
Поле, каждое значение которого однозначно определяет соответствующую запись, называется ключевым. Если записи однозначно определяются значениями нескольких полей, то такая таблица базы данных имеет составной ключ.
Достоинства реляционной модели:
1) простота и доступность понимания конечным пользователем — единственной информационной конструкцией является таблица;
2) при проектировании реляционной БД применяются строгие правила, базирующие на математическом аппарате;
3) полная независимость данных. При изменении структуры реляционной изменения, которые требуют произвести в прикладных программах, минимальны.
Недостатки реляционной модели:
1) относительно низкая скорость доступа и большой объем внешней памяти;
2) трудность понимания структуры данных из-за появления большого кол-ва таблиц в результате логического проектирования;
3) далеко не всегда предметную область можно представить в виде совокупности таблиц.
В последнее время всё большее количество БД основываются на РМ в виду её простоты и удобства, а также большого количества программных продуктов для разработки этой СУБД. И даже недостатки реляционной модели компенсируются ростом быстродействия и ресурсов памяти современных ЭВМ.
Для курсового проекта была выбрана реляционная модель данных. Для данной предметной области она является оптимальной, поскольку обладает такими свойствами, как удобство реализации, простота. Сетевая модель не подходит из-за сложного доступа к элементам и является довольно громоздкой, что затрудняет отслеживание смысла связей между объектами. В реляционной модели связи легко определимы. В иерархической модели данных отсутствует механизм, поддерживающий связи между элементами различных поддеревьев, что также может затруднить работу.
Реляционная модель данных представлена на рисунке 3.5. Таблица Аптека содержит название аптеки, № аптеки, адрес, телефон, лицензию. Таблица Изготовитель содержит название изготовителя, телефон, адрес. В таблице Тип хранится информация о названии типа медикамента. Таблица Препараты хранит названия препаратов дату изготовления, рецепт. Таблица Медикамент хранит информацию о названии медикамента и цену. Таблица Владелец хранит Ф.И.О. владельца, дату рождения, страховку. Таблица Поступает хранит информацию о дате поступления медикамента и количестве.
Рисунок 3.5 – Реляционная модель данных
Проанализировав типы моделей данных, я пришла к выводам, что удобнее реализовывать базу данных на основе реляционной модели.
Реляционная модель данных проста и удобна для понимания, в отличии от сетевой, где очень легко запутаться в связях между объектами и не так громоздка, как иерархическая модель.
Данные в реляционной модели не зависимы и при изменении структуры не требуется переделывать всю базу, как в иерархической и сетевой моделях. Также реляционная модель рассчитана на разнообразные типы запросов, в отличии от иерархической, ориентированной на конкретные запросы.
В настоящее время для разработки реляционной СУБД существует множество программных продуктов и систем поддержки. Все это делает разработку именно такой модели данных наиболее удобной.