- Виды компьютерных сетей
- Виды топологических структур локальных компьютерных сетей и их характеристики.
- 2. Древовидная топология.
- 3. Звездообразная топология.
- Класс последовательные сети
- 1. Звездообразная топология с активным центром.
- 2. Кольцевая топология.
- Методы передачи данных в сетях эвм. Коммутация каналов
Виды компьютерных сетей
Компьютерные сети в зависимости от территории, ими охватываемой, подразделяются на:
- локальные (ЛВС или LAN — Local Area Network);
- региональные (РВС или MAN — Metropolitan Area Network);
- глобальные (ГВС или WAN — Wide Area Network).
Локальной называется сеть, абоненты которой находятся на небольшом расстоянии друг от друга. Обычно ЛВС «привязана» к конкретному объекту, различают локальные сети предприятий, фирм, банков, офисов и т. д. ЛВС могут использовать и технологии глобальной сети Интернет, входить в состав корпоративной сети. Региональные сети связывают абонентов города, района, области или даже небольшой страны. Обычно расстояния между абонентами региональной КС составляют десятки — сотни километров. Глобальные сети объединяют абонентов, удаленных друг от друга на значительное расстояние, часто находящихся в различных странах или на разных континентах. Взаимодействие между абонентами такой сети может осуществляться на базе телефонных линий связи, систем радиосвязи и даже спутниковой связи. Объединение глобальных, региональных и локальных вычислительных сетей позволяет создавать многосетевые иерархии. Они обеспечивают мощные, эффективные системы обработки огромных информационных массивов и доступ к неограниченным информационным ресурсам. Локальные вычислительные сети могут входить как компоненты в состав региональной сети, региональные сети — объединяться в составе глобальной сети и, наконец, глобальные сети могут также образовывать сложные структуры. Именно такая структура принята в наиболее известной и популярной сейчас всемирной суперглобальной информационной сети Интернет. По принципу организации передачи данных сети можно разделить на две группы:
- последовательные;
- широковещательные.
В последовательных сетях передача данных выполняется последовательно от одного узла к другому и каждый узел ретранслирует принятые данные дальше. Практически все глобальные, региональные и многие локальные сети относятся к этому типу. В широковещательных сетях в каждый момент времени передачу может вести только один узел, остальные узлы могут только принимать информацию. К такому типу сетей относится значительная часть ЛВС, использующая один общий канал связи (моноканал) или одно общее пассивное коммутирующее устройство. По геометрии построения (топологии) КС могут быть:
- шинные (линейные, bus);
- кольцевые (петлевые, ring);
- радиальные (звездообразные, star);
- распределенные радиальные (сотовые, cellular);
- иерархические (древовидные, hierarchy);
- полносвязные (сетка, mesh);
- смешанные (гибридные).
Сети с шинной топологией используют линейный моноканал передачи данных, к которому все узлы подсоединены через интерфейсные платы посредством относительно коротких соединительных линий. Данные от передающего узла сети распространяются по шине в обе стороны. Промежуточные узлы не ретранслируют поступающих сообщений. Информация поступает на все узлы, но принимает сообщение только тот, которому оно адресовано. Шинная топология — одна из наиболее простых топологий. Такую сеть легко наращивать и конфигурировать, а также адаптировать к различным системам; она устойчива к возможным неисправностям отдельных узлов. Сеть шинной топологии применяют широко известная сеть Ethernet, и организованная на ее адаптерах сеть Novell NetWare, очень часто используемая в офисах, например. Условно такую сеть можно изобразить, как показано на рис. 16.2. В сети с кольцевой топологией все узлы соединены в единую замкнутую петлю (кольцо) каналами связи. Выход одного узла сети соединяется со входом другого. Информация по кольцу передается от узла к узлу и каждый узел ретранслирует посланное сообщение. В каждом узле для этого имеются свои интерфейсная и приемо-передающая аппаратура, позволяющая управлять прохождением данных в сети. Передача данных по кольцу с целью упрощения приемо-передающей аппаратуры выполняется только в одном направлении. Принимающий узел распознает и получает только адресованные ему сообщения. Рис. 16.2. Сеть с шинной топологиейВвиду своей гибкости и надежности работы, сети с кольцевой топологией получили также широкое распространение на практике (например, сеть Token Ring). Условная структура такой сети показана на рис. 16.3. Основу последовательной сети с радиальной топологией составляет специальный компьютер — сервер, к которому подсоединяются рабочие станции, каждая по своей линии связи. Вся информация передается через центральный узел, который ретранслирует, переключает и маршрутизирует информационные потоки в сети. По своей структуре такая сеть, по существу, является аналогом системы телеобработки, у которой все абонентские пункты являются интеллектуальными (содержат в своем составе компьютер). Рис. 16.3. Сеть с кольцевой топологиейВ качестве недостатков такой сети можно отметить:
- большую загруженность центральной аппаратуры;
- полную потерю работоспособности сети при отказе центральной аппаратуры;
- большую протяженность линий связи;
- отсутствие гибкости в выборе пути передачи информации.
Последовательные радиальные сети используются в офисах с явно выраженным централизованным управлением. Но используются и широковещательные радиальные сети с пассивным центром — вместо центрального сервера в таких сетях устанавливается коммутирующее устройство, обычно концентратор, обеспечивающий подключение одного передающего канала сразу ко всем остальным. Рис.16.4. Сеть с радиальной топологиейВ общем случае топологию многосвязной компьютерной сети можно представить на примере топологии «сетка» в следующем виде — рис. 16.5: Рис. 16.5. Обобщенная структура компьютерной сети В структуре сети можно выделить коммуникационную и абонентскую подсети. Коммуникационная подсеть является ядром вычислительной сети, связывающим рабочие станции и серверы сети друг с другом. Звенья коммуникационной подсети (в данном случае — узлы коммутации) связаны между собой магистральными каналами связи, обладающими высокой пропускной способностью. В больших сетях коммуникационную подсеть часто называют сетью передачи данных. Звенья абонентской подсети (хост-компьютеры, серверы, рабочие станции) подключаются к узлам коммутации абонентскими каналами связи — обычно это среднескоростные телефонные каналы связи. В зависимости от используемой коммуникационной среды сети делятся на сети с моноканалом, иерархические, полносвязные сети и сети со смешанной топологией.
- В сетях с моноканалом данные могут следовать только по одному и тому же пути; в них доступ абонентов к информации осуществляется на основе селекции (выбора) передаваемых кадров или пакетов данных по адресной части последних. Все пакеты доступны всем пользователям сети, но «вскрыть» пакет может только тот абонент, чей адрес в пакете указан.
- Иерархические, полносвязные и сети со смешанной топологией в процессе передачи данных требуют маршрутизации последней, то есть выбора в каждом узле пути дальнейшего движения информации. Правда, альтернативная неоднозначная маршрутизация выполняется только в сетях, имеющих замкнутые контуры каналов связи (ячеистую структуру). Такие сети называются сетями с маршрутизацией информации.
Виды топологических структур локальных компьютерных сетей и их характеристики.
Используется разомкнутый сегмент кабеля, к которому с некоторыми интервалами подключены станции. Передаваемая информация распространяется в обе стороны. Достоинства:
- Снижение стоимости проводки.
- Повышение надежности системы.
- Унифицированное подключение модулей.
- Простота монтажа.
Недостатки:
- Возможность взаимного наложения сообщений.
- Возможность несанкционированного прослушивания передачи.
- Ограниченность общей длины шины.
2. Древовидная топология.
Это развитая топология шинного типа. Подсоединяются несколько простых шин к одной магистральной посредством активных повторителей. Достоинства:
- как у шинной топологии
- Кроме того имеется возможность наращивания сети целыми группами.
Недостатки:
- Более низкая скорость.
- Тщательный подбор кабельных ответвлений с согласованными параметрами.
3. Звездообразная топология.
В центре звезды находится либо пассивный коммутатор либо активное устройство, управляющее обменом данными между станциями. Центральный узел действует также как преобразователь скоростей. Достоинства:
- Использование разных скоростей передачи и типов каналов.
- Простота обнаружения и устранения неисправностей.
- Высокий уровень защиты от несанкционированного доступа.
- Простота адресации, контролируемой из центра.
- Простота доступа многих абонентов к одному центру обслуживания.
Недостатки:
- Зависимость от надежности центрального узла.
- Высокая стоимость и сложность центрального узла.
- Высокие затраты на кабельные соединения.
Класс последовательные сети
1. Звездообразная топология с активным центром.
2. Кольцевая топология.
Сигналы передаются по кольцу в одном направлении. Каждая станция непосредственно подсоединяется к двум соседним узлам и «прослушивает» передачу любой другой станции. Либо все станции имеют равные права доступа к физической среде, либо одна станция выполняет функции по удалению искаженных или дублированных пакетов, тестирование кольца. Достоинства:
- Простота маршрутизации.
- Отсутствие зависимости от центрального устройства.
- Простота обнаружения неисправных участков
- Простота обнаружения ошибок, автоматическое подтверждение приема.
- Возможность высоких скоростей передачи.
Недостатки:
- Зависимость надежности сети от всех кабелей.
- Сложность удлинения кольца и подключения новых станций без прерывания его функционирования.
Топологии крупных сетей ЭВМ обычно представляют собой комбинацию нескольких топологических решений.
Методы передачи данных в сетях эвм. Коммутация каналов
Этот метод почти всегда используется в телефонных сетях, в сетях передачи данных встречается редко. Для установления соединения между источником и адресатом необходимо найти путь, вдоль которого отдельные участки цепи могут быть соединены таким образом, чтобы сформировать сквозной канал на все время передачи. Для этого источник посылает специальное сообщение, которое перемещаясь от узла к узлу коммутации каналов и занимая каналы, прокладывает путь. Адресат посылает источнику сигнал обратной связи (физическое соединение установлено). Затем передается сообщение из источника адресату по сквозному каналу. При этом образующие его каналы недоступны другим передачам до окончания сеанса. Сигналы управления могут передаваться по тому же тракту, что и данные. Достоинства:
- Сокращение времени установки соединения;
- Улучшение качества передачи;
- Гарантированная постоянная скорость передачи по сети в случае успешной установки соединения;
- Работа в масштабе реального времени.
Недостатки:
- Неэффективное использование линий связи;
- Если нельзя найти путь от источника к адресату из-за отсутствия свободных линий, то соединение (сеанс) отвергается;
- Гарантированная скорость передачи ограничена каналом с минимальной скоростью передачи.